[发明专利]多能谱X射线成像系统和用于利用多能谱X射线成像系统对待测物品进行物质识别的方法有效
申请号: | 201611159161.0 | 申请日: | 2016-12-07 |
公开(公告)号: | CN108181327B | 公开(公告)日: | 2021-02-05 |
发明(设计)人: | 徐光明;刘必成;赵自然;顾建平;李强;张岚 | 申请(专利权)人: | 同方威视技术股份有限公司 |
主分类号: | G01N23/04 | 分类号: | G01N23/04 |
代理公司: | 中科专利商标代理有限责任公司 11021 | 代理人: | 杨姗 |
地址: | 100084 北京*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 多能 射线 成像 系统 用于 利用 对待 物品 进行 物质 识别 方法 | ||
本发明公开了一种用于利用多能谱X射线成像系统对待测物品进行物质识别的方法,包括:获得所述待测物品在N个能区中的透明度值组成的透明度相关向量,其中N大于2;利用非线性降维算法将所述透明度相关向量和所述系统中存储的多种物品在多种厚度的情况下在所述N个能区中的N个透明度均值组成的透明度相关向量映射到二维平面上,以分别得到所述待测物品的透明度相关向量在所述二维平面上的映射点和所述多种物品的透明度相关向量在所述二维平面上的映射点集合;确定所述映射点集合中与所述映射点最近的点;以及将所述待测物品识别为所述多种物品中与所述最近的点相对应的物品。
本申请是2016年12月7日向中国专利局递交的题为“多能谱X射线成像系统和用于利用多能谱X射线成像系统对待测物品进行物质识别的方法”的发明专利申请No.201611120598.3的分案申请。
技术领域
本公开大体上涉及辐射成像领域,更具体地,涉及多能谱X射线成像系统和用于利用多能谱X射线成像系统对待测物品进行物质识别的方法。
背景技术
X射线透射成像技术广泛地应用于安检和医疗等领域。成像系统的物质识别能力是衡量系统指标的一个重要标准。
在X射线透射成像原理中,最基本的公式是I=I0e-μt,即单能X射线束流强度随吸收物质厚度按指数函数形式衰减,其中I0是衰减前的射线强度,I是经过一定厚度材料的衰减后的射线强度,t是材料的质量厚度;μ表示质量衰减系数,并且表征了物质的材料属性。透明度值T=I/I0=e-μt理论上介于0到1之间,其中I0一般可以通过扫描空气图像来进行获取。α值定义为α=-lnT=μt。
目前安检领域广泛采用的双能成像设备采用了两种不同能谱的X射线穿透被检物,利用两种透明度值的差异,可以在一定程度上获取被检物的材料等效原子序数信息,但是由于双能X射线两种能谱之间存在较大重叠,客观上限制了双能系统的物质识别能力。
多能谱成像通过采用具有一定能谱分辨能力的光子计数型探测器,可以将较宽能谱分布的X射线分为若干个不同的能量区间然后分别在各个能区内对光子进行计数统计并进行成像。近年来,随着CZT等光子计数型探测器技术的不断发展,多能谱成像技术也日趋成熟。由于多能谱X射线成像技术在降低辐射剂量、提高物质识别能力方面具有明显优势,因此在安检和医疗等领域都具有广阔的应用前景。相比于传统的双能成像,多能谱成像基本消除了能谱的交叉重叠,不同能谱之间的能量区分度更好,同时可以根据需要将能谱划分成更多的能量区间(如图1所示),为更多能量信息的引入提供了条件。
目前对于多能谱物质识别方法的研究主要有:
针对多能谱CT成像,提出根据X射线能谱不同能区的投影数据计算得到衰减系数μi的分布,进而采用曲线逼近等方法找到与之最相近的原子序数Z,从而实现物质分类。
给出了涉及变量个数为N的多维特征空间高斯概率密度表达式,如下式(1)所示,其中∑ij是厚度为tj的材料Zi的协方差矩阵,向量μij对应于采用标定材料所获得的α值均值向量:
该方案首先通过扫描不同厚度的标定材料得到特征均值向量和协方差矩阵,然后根据高斯概率密度表达式计算出待测材料可能属于各类别的概率,根据最大概率原则实现物质分类。类似技术方案还可见于法国研究机构CEA-Leti的文章。
MultiX提出基于光子计数的泊松统计构造似然函数,并通过将待测物和标定材料的似然值逐一比对计算来实现物质识别的方法。CEA-Leti在其另外一篇文章中针对多能谱背散射成像问题,发现常见的几种有机物材料在低能区间质量衰减系数曲线的斜率值Dμ′和它们的原子序数值Z基本呈线性关系,从而提出可以通过计算待测物的Dμ′来进行物质识别。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于同方威视技术股份有限公司,未经同方威视技术股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201611159161.0/2.html,转载请声明来源钻瓜专利网。