[发明专利]一种基于双谱和EMD融合特征的手机个体识别方法有效
申请号: | 201611147214.7 | 申请日: | 2016-12-13 |
公开(公告)号: | CN106845339B | 公开(公告)日: | 2020-03-24 |
发明(设计)人: | 杨远望;丁敏;黄培培;朱学勇 | 申请(专利权)人: | 电子科技大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/62;H04L29/06 |
代理公司: | 成都行之专利代理事务所(普通合伙) 51220 | 代理人: | 温利平 |
地址: | 611731 四川省成*** | 国省代码: | 四川;51 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 emd 融合 特征 手机 个体 识别 方法 | ||
1.一种基于双谱和EMD融合特征的手机个体识别方法,其特征在于,包括以下步骤:
(1)、对待识别的手机个体采样
在手机通话阶段,使用AD9361软件无线电平台对待识别的手机个体采样,采样频段为a~bMHz,采样频率为fsMHz,其中,设待识别的手机个体共C个,每个手机个体采样M组采样数据,则待识别的手机个体共计采样出C×M组采样数据;
(2)、采样数据预处理
将C×M组采样数据依次通过PCIE实时传输到PC机上,再通过对采样数据进行解帧和重组,得到I、Q两路数据信号;
(3)、获取数据样本集
计算I、Q两路数据信号的模值,将采样数据的长度等于L且模值大于预设阈值的采样数据保存在数据样本集S{n}中,n表示数据样本集中采样数据的个数,n≤C×M;
(4)、求取样本特征集X
计算每个数据样本的双谱,再求取其矩形围线积分作为双谱特征,最后利用多分类Fisher判别双谱特征,将双谱特征分离度最大的k个特征作为样本特征集X;
(5)、求取样本特征集Y
计算每个数据样本的经验模态分解,再去除主分量和噪声后计算出杂散成分的功率谱,最后利用主成分分析法对杂散成分的功率谱进行降维,将降维后最大的前p个主成分分量作为样本特征集Y;
(6)、利用典型相关分析法对样本特征集X和样本特征集Y进行特征融合,得到融合后的特征集Z,对Z按m%:n%的比例做水平切分,其中,m%作为训练集ZTrain,剩下的为测试集ZTest;
其中,利用典型相关分析法对样本特征集X和样本特征集Y进行特征融合的具体方法为:
(6.1)、令Sxx∈Rp×p,Syy∈Rq×q分别表示特征集X和Y的方差,Sxy∈Rp×q表示特征集X和Y的协方差,Syx是Sxy的对称矩阵,其中p,q分别是特征集X和特征集Y中的样本个数;
(6.2)、构造协方差矩阵S:
(6.3)、构造一组线性变换Wx,W
其中
(6.4)、令cov(X*)=cov(Y*)=1,使用拉格朗日乘子法求解上式的目标函数max{cov(X*,Y*)},即求解关于两个方程的广义特征值问题,可以得到Wx,W
其中,R2是特征根对角矩阵,其中非零特征值的个数为d=rank(Sxy)≤min(n,p,q),并且按降序排列λ1≥λ2≥…λd,Wx,W
(6.5)、由上式得到Wx,W
(7)、构建随机森林分类器,用训练集ZTrain训练该分类器,并利用训练好的分类器对测试集ZTest进行分类决策,最终输出手机个体识别结果。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于电子科技大学,未经电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201611147214.7/1.html,转载请声明来源钻瓜专利网。