[发明专利]一种智能可穿戴设备行为数据的多级语义特征提取方法有效
申请号: | 201611128886.3 | 申请日: | 2016-12-09 |
公开(公告)号: | CN106599988B | 公开(公告)日: | 2019-10-08 |
发明(设计)人: | 刘慈航;张兰;刘宗前;刘克彬;李向阳;刘云浩 | 申请(专利权)人: | 无锡清华信息科学与技术国家实验室物联网技术中心 |
主分类号: | G06N3/04 | 分类号: | G06N3/04;G06N3/08 |
代理公司: | 北京品源专利代理有限公司 11332 | 代理人: | 孟金喆;胡彬 |
地址: | 214135 江苏省无锡市新*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 智能 穿戴 设备 行为 数据 多级 语义 特征 提取 方法 | ||
本发明公开一种智能可穿戴设备行为数据的多级语义特征提取方法,包括如下步骤:S101、构建单级行为空间,找到行为空间下的一组基;S102、构建多级行为空间,从不同的粒度分析行为数据;S103、提取行为数据在多级行为空间下的多级语义特征。本发明无需人工对数据进行标注,在极大减少人力成本的同时可以适用于任何行为;同时,提取出的语义特征可以从不同粒度上对行为进行分析,可以保证很高的识别精度。本发明与传统的基于预定义特征空间的方法相比准确度有大幅提高,而和现有基于有监督的深度神经网络的方法相比,本发明甚至能提供更高的识别准确度。
技术领域
本发明涉及移动感知领域,尤其涉及一种智能可穿戴设备行为数据的多级语义特征提取方法。
背景技术
近年来,因为通信技术、传感器技术和嵌入式计算技术的日益成熟,智能可穿戴设备如智能手表、手环等市场得到飞速发展。相比于智能手机,智能可穿戴设备更加贴近使用者的日常生活且更容易被使用者长时间佩戴。因此,通过智能可穿戴设备对用户行为数据进行分析和理解将对智能医疗、智能经济、保险等领域的发展产生巨大推动作用。然而现有的应用尚处于比较低水平的阶段:应用市场上大部分应用如微信运动、咕咚跑步等仅可以通过用户的行为数据记录用户的步数,并换算出行走的路程、消耗的热量等信息。有一些研究可以实现对智能可穿戴设备用户日常行为如吃饭、喝水等和键盘输入等行为的理解。然而,由于行为数据不稳定,极容易受到各种环境因素的干扰,对于某一种行为来说,不同的人在不同的时间通过不同的设备收集的数据也很可能反映出来不同的特性,极大地增加了理解的难度。此外,行为的任意性导致无法人工枚举出所有可能发生的行为并对其进行标注,进一步增加了理解、分析行为数据的难度。
当前主要的理解、分析用户行为数据的技术可分为三类。第一类技术是行为建模技术,即通过观察用户行为的特性在数据层面上对行为进行建模,之后利用行为模型对数据进行匹配和识别。这种方法对理解特定行为有比较强的针对性,但是建模过程往往需要长时间的观察和分析,且针对不同行为所建立的模型往往不能通用。第二类技术通过预定义特征空间的方法对行为进行理解,利用不同行为的移动感知数据在特征空间上的分布不同这一特性,通过机器学习的方法对行为进行理解。这一方法不需要预先对行为建模,但预定义的特征空间往往不能提供很好的精度。第三类技术采用有监督的深度神经网络,通过大量的有标注数据对网络进行训练,可以实现比较高的识别精度。密苏里科技大学的研究人员提出利用预先标注好事件类型的行为数据对卷积神经网络进行有监督的学习,可以使识别的准确率达到98%左右。但行为进行标注的过程需要耗费大量的人力物力,且训练出的网络不能对未标注的行为进行理解,这种方法很难被应用到现实场景中。
现有的能提供高识别准确率的方法很大程度上要求研究人员对智能可穿戴设备的使用场景或具体的行为类型有先验知识,限制了其在现实生活中的实用性。事实上,可穿戴设备使用者的使用环境、设备以及行为都存在很强的任意性,人工标注无法枚举出所有可能的情况。随着可穿戴设备的越来越深入人们的日常生活,现有的理解和分析用户行为数据的方法已经远远不能满足需求。
发明内容
本发明的目的在于通过一种智能可穿戴设备行为数据的多级语义特征提取方法,来解决以上背景技术部分提到的问题。
为达此目的,本发明采用以下技术方案:
一种智能可穿戴设备行为数据的多级语义特征提取方法,其包括如下步骤:
S101、构建单级行为空间,找到行为空间下的一组基;
S102、构建多级行为空间,从不同的粒度分析行为数据;
S103、提取行为数据在多级行为空间下的多级语义特征。
特别地,所述步骤S101包括:利用卷积核函数处理行为数据,同时利用卷积受限玻尔兹曼机(CRBM)无监督地学习出一组卷积核函数作为行为空间下的一组基。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于无锡清华信息科学与技术国家实验室物联网技术中心,未经无锡清华信息科学与技术国家实验室物联网技术中心许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201611128886.3/2.html,转载请声明来源钻瓜专利网。
- 上一篇:一种图像计数的方法及装置
- 下一篇:一种小水电机组自动调节系统及其方法