[发明专利]一种基于栈式自编码的头部姿态估计方法有效

专利信息
申请号: 201611100343.0 申请日: 2016-12-05
公开(公告)号: CN106599810B 公开(公告)日: 2019-05-14
发明(设计)人: 潘力立 申请(专利权)人: 电子科技大学
主分类号: G06K9/00 分类号: G06K9/00
代理公司: 电子科技大学专利中心 51203 代理人: 张杨
地址: 611731 四川省成*** 国省代码: 四川;51
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 编码 头部 姿态 估计 方法
【权利要求书】:

1.一种基于栈式自编码的头部姿态估计方法,包括以下步骤:

步骤1:采集N幅包含不同姿态的头部深度图像,并根据采集每幅图像时摄像头的位置,记录N幅图像各自对应的头部俯仰、偏航和旋转角度,得到头部姿态向量的第1维表示俯仰角,第2维表示倾斜角,第3维表示旋转角,下标n表示第n幅图像;

步骤2:检测步骤1采集到图像的头部区域,并提取该头部区域的梯度方向直方图特征,组成梯度方向直方图特征向量

步骤3:对步骤2中得到梯度方向直方图特征向量在每一维进行数值归一化,将数值范围压缩到[0,1]区间,将姿态的范围归一化到[0,1]区间;

所述步骤3的具体方法为:

将数值范围压缩到[0,1]区间,具体做法为:对于第n个样本,其第i维的数据归一化公式

为所有样本第i维上的最小值,为所有样本第i维上最大值;

将姿态的范围归一化到[0,1]区间,具体做法为:

其中表示第n个样本的标定姿态第j维的分量,ynj表示该维归一化后的数值;

步骤4:构建栈式自编码器对应的映射函数,设输入为其中s1表示特征的维数,使用的栈式自编码器共有5层;第1层为输入层,输入层的输入为梯度方向直方图特征向量,第1层节点的个数为梯度方向直方图特征向量的维数,第2-4层为隐单元层,第5层为输出层;任意一层l的任意一个节点单元用符号表示,上标(l)表示第l层,其计算公式为:

表示连接神经网络第l层的所有sl个单元和第l+1层的第i个单元之间的参数;具体讲,表示连接第l层的第j个单元和第l+1层第i个单元之间的参数,为与第l+1层的隐单元i相关的偏差项,sl+1为第l+1层隐单元的数目;σ(·)为S形函数,其表达式为若定义则上式也可以表示为:

改栈式自编码器的输出层有3个单元,用符号表示,用以表示估计头部姿态的俯仰角、倾斜角和旋转角;整个栈式自编码模型用函数hw,b(x)表示当输入为x时的估计头部姿态,即:

步骤5:当输入为x时,假设对应的标定姿态为y,栈式自编码对姿态估计值和标定姿态之间的误差为:

同时,为了表示输出层每一个单元对误差贡献的大小定义误差项

表示的导数,利用后向传播算法,计算l=2,3,4层时每一个节点j对应的误差项;

最后得到下面两个估计误差关于和的偏导数:

步骤6:利用步骤4中的栈式自编码模型,将步骤3中归一化的梯度方向直方图特征xn作为栈式自编码的输入,对应的标定头部姿态值为[y1,...,yN],建立栈式自编码的优化目标函数:

其中和λ约束项的强度;

步骤7:求解目标函数J(w,b)关于参数和的偏导数

其中和表示当输入为xn时对应的第l层的第j个单元的输出和第l+1层第i个单元对应的误差项;最后得到目标函数J(w,b)关于参数向量w,b的梯度和

步骤8:为了求得最佳的栈式自编码参数w和b,我们需要先初始化参数,再利用梯度下降法进行优化,具体包含下面两个步骤:

(a)w和b初始化;首先随机初始化w和b,w表示为(w(1),...,w(4))T,其中w(l)表示第l层的参数;b表示为(b(1),...,b(4))T,之后逐层修正第1、2、3层的参数;当修正第1层参数时,利用梯度下降法优化参数w(1)和b(1),利用第1层网络重构原始输入特征,并使重构误差最小;当修正第2层参数时,利用梯度下降法优化参数w(2)和b(2),把第1层的输出作为第2层的输入,利用第2层网络重构原始输入特征,并使重构误差最小;当修正第3层参数时,利用梯度下降法优化参数w(3)和b(3),把第2层的输出作为第3层的输入,利用第3层网络重构原始输入特征,并使重构误差最小;对于第4层参数,利用第3层的输出作为第4层的输入,优化参数w(4)和b(4),使得输出和标定姿态之间的误差平方和最小;由此初始化第1到第4层网络;

(b)梯度下降法;根据初始化值,更新参数向量w和b,即:

其中上标[t]和[t+1]表示第t次和t+1次迭代;当w和b满足收敛条件时停止迭代;

步骤9:对于新的头部图像,确定头部区域并提取梯度方向直方图特征,数值归一化之后送入训练好的栈式自编码器中,得到对应的头部姿态估计值,并将数值范围还原到-180到+180。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于电子科技大学,未经电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201611100343.0/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top