[发明专利]一种弱信号目标检测的优化方法有效

专利信息
申请号: 201610039746.2 申请日: 2016-01-13
公开(公告)号: CN105740761B 公开(公告)日: 2019-02-15
发明(设计)人: 许芳 申请(专利权)人: 中国船舶重工集团公司第七○九研究所
主分类号: G06K9/00 分类号: G06K9/00
代理公司: 暂无信息 代理人: 暂无信息
地址: 430205 湖北省武*** 国省代码: 湖北;42
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 信号 目标 检测 优化 方法
【说明书】:

发明涉及一种弱信号目标检测的优化方法,其具体步骤如下:(1)读取离散化后的输入信号;(2)对信号x(n)进行四重自相关;(3)计算相关函数的频谱;(4)由相关信号的频谱,根据信号的频谱与自相关函数频谱的关系,由四重相关信号频谱计算信号x1(n)的频谱;(5)计算匹配滤波器的传输函数;(6)求信号经过匹配滤波器的频谱;(7)采用多正弦窗进行谱估计;(8)将信号频谱还原为时域信号。本发明方法利用四重相关和三谱分析,实现高阶矩范围内信号处理,采用匹配滤波器求信号经过匹配滤波器滤波后的频谱,该滤波器能够给出最大的信噪比。采用多正弦窗进行谱估计,对谱图会有一定的平滑效果;同时能够保证一定的频率分辨能力。

技术领域

本发明涉及一种弱信号目标检测的优化方法,属于计算机算法技术领域。

背景技术

相关检测技术是根据噪声与噪声、噪声与信号均不相关,而信号与信号则完全相关的特性,通过相关运算达到去除噪声的一种技术。现已普遍证明,它是从噪声中提取有用信号,提高输出信噪比的有效方法。它在自动控制、通信、雷达等领域都获得了广泛的应用。四重相关和三谱(四重相关函数的频谱函数)分析就是高阶矩范围内的信号处理方法,由于零均值的高斯平稳随机过程的四重相关等于零,以及四重相关具有位移和旋转不变性等特点,并且三谱富有丰富的冗余信息。

被动式监控探测系统,例如红外监控探测系统较之于主动式探测系统具有难以比拟的优势。然而,被动式目标探测系统所要探测的信号通常迭加有强噪声。因此,从强噪声中将有用的信号提取出来,就成为目标识别的前提。四重相关检测技术可实现信号与噪声的分离,去除噪声。采用匹配滤波器,给出最大的信噪比。通常,对监控探测系统所探测到的目标信号的处理主要是利用二阶统计矩,即功率谱和二重相关函数,这就是二重相关匹配滤波技术。从频域角度来分析,二重相关匹配滤波器可以最大限度地吸收有用信号的能量,而最大限度地抑制信号频带以外的噪声。根据信号与噪声的不同频谱特点,采用线性滤波器消除噪声频谱。当线性滤波器传输函数为输入信号频谱函数的复共轭时,该滤波器能够给出最大的信噪比。

然而,许多实验研究表明,无论二重相关滤波器设计得多么精细,信号频带之内的噪声仍然是难以抑制的。为了进一步提高信噪比,应该设法抑制信号频带之内的噪声。一个有效的解决办法就是采用高阶矩范围内的信号处理方法。四重相关和三谱(四重相关函数的频谱函数)分析就是高阶矩范围内的信号处理方法,由于零均值的高斯平稳随机过程的四重相关等于零,以及四重相关具有位移和旋转不变性等特点,并且三谱富有丰富的冗余信息,因此,四重相关匹配滤波技术较之二重相关匹配滤波技术可以进一步抑制噪声从而提高信噪比。随着这一技术研究的深入,基于四重相关的分析方法发展了许多新的信号处理方法,使得这一技术更加完善。并且在红外成像、信号的高阶谱分析等诸多领域获得了广泛的应用。

在滤波方面,线性滤波器可以地滤除信号中的噪声,但滤波以后的信噪比不够高,当线性滤波器传输函数为输入信号频谱函数的复共轭时,该滤波器能够给出最大的信噪比。

多正弦窗谱估计具有较小的偏差。同时,由于进行了多个特征谱的加权平均,对谱图会有一定的平滑效果,因此谱估计的方差性能较传统的周期图法会有显著的改善。同时能够保证一定的频率分辨能力。

发明内容

本发明的目的在于提供一种弱信号目标检测的优化方法,以便更好地针对弱信号目标检测进行优化,采用更好的算法予以优化。

为了实现上述目的,本发明的技术方案如下。

一种弱信号目标检测的优化方法,其具体步骤如下:

(1)读取离散化后的输入信号:x(n)n=0,1,2......N-1,其中N为信号x(t)的采样点数;

(2)对输入信号x(n)进行四重自相关,具体方法为,设信号x(n)包括有用信号s(n)和随机加性噪声u(n),信号表达式为:x(n)=s(n)+u(n),首先对输入信号x(n)进行二重自相关:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国船舶重工集团公司第七○九研究所,未经中国船舶重工集团公司第七○九研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201610039746.2/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top