[发明专利]一种基于SDA和Softmax回归的深度学习滚动轴承故障诊断方法有效

专利信息
申请号: 201510178093.1 申请日: 2015-04-15
公开(公告)号: CN104792530B 公开(公告)日: 2017-03-22
发明(设计)人: 吕琛;马剑;王振亚;李连峰;赵万琳 申请(专利权)人: 北京航空航天大学
主分类号: G01M13/04 分类号: G01M13/04
代理公司: 北京科迪生专利代理有限责任公司11251 代理人: 杨学明,顾炜
地址: 100191*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 sda softmax 回归 深度 学习 滚动轴承 故障诊断 方法
【权利要求书】:

1.一种基于SDA和Softmax回归的深度学习滚动轴承故障诊断方法,其特征在于:该方法包括如下步骤:

第一步:基于均匀分布的原始数据“遮挡”预处理

该方法以滚动轴承的原始数据作为输入样本x,采用遮挡处理,即在该样本中加入随机噪声,以均匀分布(qD分布)将输入层的部分节点置0,得到新的输入样本x';然后以遮挡处理后的x'作为SDA神经网络模型的输入,通过多层神经网络的深度学习来表达出遮挡前的样本x,实现对原始数据的重构,从而实现高鲁棒性的特征自表达,提高故障诊断的抗噪能力;

第二步:基于SDA模型的滚动轴承特征无监督自学习过程

通过对滚动轴承故障模式的分析,得出滚动轴承在不同故障模式下的振动数据,然后利用第一步的步骤将得到的正常和故障数据进行遮挡处理,通过无监督自学习训练SDA模型;该方法中的无监督自学习过程是一个深度学习的过程,SDA模型框架是具有两个隐层的神经网络,通过对数据的逐层学习得到最终的重构基向量,且将神经网络第一个隐层的输出作为第二个隐层的输入;

第三步:基于Softmax回归与参数微调算法的故障诊断

选择Softmax回归算法作为滚动轴承故障诊断算法,以SDA算法重构出的基向量作为Softmax算法的输入,解决滚动轴承在多个故障模式下的分类问题,通过最小化代价函数计算每一种分类结果出现的概率,并利用参数微调的方法对深度学习神经网络整体进行优化,如果某故障特征计算的概率值最大,即确定故障为当前估计的故障模式。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京航空航天大学,未经北京航空航天大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201510178093.1/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top