[发明专利]N-TiO2/C和N-TiO2及其制备方法有效
| 申请号: | 201410266520.7 | 申请日: | 2014-06-16 |
| 公开(公告)号: | CN104028292A | 公开(公告)日: | 2014-09-10 |
| 发明(设计)人: | 王智宇;王佳;钱国栋;樊先平 | 申请(专利权)人: | 浙江大学 |
| 主分类号: | B01J27/24 | 分类号: | B01J27/24;B01J37/08 |
| 代理公司: | 杭州求是专利事务所有限公司 33200 | 代理人: | 张法高 |
| 地址: | 310027 浙*** | 国省代码: | 浙江;33 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | tio sub 及其 制备 方法 | ||
技术领域
本发明涉及一种二氧化钛纳米材料的制备方法,尤其是一种氮掺杂氧化钛/碳的纳米复合物(N-TiO2/C)或氮掺杂氧化钛(N-TiO2)的制备方法,属于化学材料的制备领域,在光催化降解污染物方面有着非常重要的用途。
背景技术
由于具有成本低,无毒,化学合成方便,热稳定性好等特性,氧化钛是一种非常常见的光催化剂。氧化钛有三种晶型,金红石,锐钛矿和板钛矿。其中,锐钛矿是最常用的光催化剂。光催化降解有机物的原理是,光照条件下,入射光子中能量高于禁带宽度的光子被价带电子吸收,然后电子跃迁到导带。光生电子从氧化钛的导带转移到染料,染料发生氧化反应,进而被氧化。锐钛矿的禁带宽度为3.2eV,只有波长小于380nm的紫外光能被氧化钛吸收利用,而紫外光的能量仅占太阳自然光谱的7%,因此,普通合成方法获得的锐钛矿对光的利用效率非常低,有必要提高锐钛矿对可见光波段的响应。
为提高锐钛矿氧化钛对整个自然光波段的响应,可以从以下两个方面进行改进,一是形貌调控,二是化学调控。形貌调控主要是通过增加氧化钛的比表面积,增加孔隙率来增加氧化钛对染料的吸附或者暴露特定晶面,如[100]或者[101]等活跃面来促进氧化钛对有机染料(例如:亚甲基蓝,亚甲基橙,品红等)的光解。形貌调控不涉及改变氧化钛的禁带宽度,因此对光吸收的增强影响不大。而另一类方法,化学调控,则主要是通过掺杂来改变氧化钛的禁带宽度从而达到对可见光的吸收。掺杂是常用的方法,包括掺杂金属和非金属。从应用的角度讲,金属成本比较高,所以对非金属元素C,H,S,N的掺杂研究比较多。但是,在对氧化钛进行C,H,N掺杂时,最常用的方法是在特殊气氛下进行热处理。比如,氮掺杂氧化钛一般是对氧化钛进行氮气气氛下高温热处理,而氢掺杂氧化钛是在氢气保护下热处理氧化钛。在特殊气氛下进行的热处理除了对实验生产条件要求高以外,还存在安全问题,整个过程生产成本也大大增加。因此,在相对低温,以及不需特殊气氛,比如空气条件下进行掺杂成为一个研究热点。
同时,研究发现,单纯氮掺杂氧化钛,虽然使氧化钛禁带宽度变窄,拓宽了其光谱响应范围,但是掺杂引入的空穴无意中为载流子提供了复合中心,导致光生载流子利用效率降低。为解决这一问题,可以对氮掺杂的氧化钛进行改性。比如,将氮掺杂氧化钛与碳进行复合。碳材料由于其强大的电子存储能力和金属导带的特性可以接受光生电子。研究发现,碳纳米材料包覆氧化钛后,由于碳和氧化钛之间的费米能级差,导致电子向碳纳米材料方向发生富集,因此促进了光生空穴-电子的分离,氧化钛的光催化效率得到了改善。但是,目前对于氮掺杂氧化钛与碳的复合研究相对较少,而且已有的制备方法反应条件并不温和,且对实验条件要求比较高。
发明内容
本发明的目的是克服现有技术的不足,提供一种N-TiO2 /C和N-TiO2及其制备方法。利用不完全水热反应制备前驱物,后续热处理过程控制TiO2的掺杂改性,不同温度获得不同化学组成的TiO2产物,即N-TiO2 /C或者N-TiO2。
氮掺杂氧化钛或其与碳的纳米复合物的制备方法包括如下步骤:
1)将四甲基氢氧化铵溶液加入到乙二醇中,四甲基氢氧化铵溶液与乙二醇的体积比为1:3,二者搅拌均匀后加入异丙醇钛,异丙醇钛溶液加入的体积为四甲基氢氧化胺溶液的1/10,室温下继续搅拌至获得均匀溶液;
2)将步骤1)中获得的均匀溶液移入到聚四氟乙烯水热釜内衬中,用不锈钢外套密封,然后在200℃下水热反应8h,自然冷却至室温;
3)利用丙酮、酒精和去离子水分别离心清洗步骤2)所获得的产物,并在空气环境中烘干;
4)对步骤3)获得的干燥产物进行热处理,热处理温度为250~550℃,热处理时间为2h,热处理氛围为空气气氛,得到氮掺杂氧化钛或氮掺杂氧化钛/碳的纳米复合物。
所述的四甲基氢氧化铵溶液为10wt%四甲基氢氧化铵水溶液。
所述的热处理温度为250~400℃时,获得氮掺杂氧化钛/碳的纳米复合物;热处理温度为400~550℃时,获得氮掺杂氧化钛。
所述制备方法制备的氮掺杂氧化钛/碳的纳米复合物氮含量为2.23~3.32%,碳含量为19~23%,比表面积为55~80m2/g,所述氮掺杂氧化钛/碳的纳米复合物中氧化钛为锐钛矿晶型。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江大学,未经浙江大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201410266520.7/2.html,转载请声明来源钻瓜专利网。
- 纳米TiO<sub>2</sub>复合水处理材料及其制备方法
- 具有TiO<sub>2</sub>致密层的光阳极的制备方法
- 一种TiO<sub>2</sub>纳米颗粒/TiO<sub>2</sub>纳米管阵列及其应用
- 基于TiO2的擦洗颗粒,以及制备和使用这样的基于TiO2的擦洗颗粒的方法
- 一种碳包覆的TiO<sub>2</sub>材料及其制备方法
- 一种应用于晶体硅太阳电池的Si/TiO<sub>x</sub>结构
- 应用TiO<sub>2</sub>光触媒载体净水装置及TiO<sub>2</sub>光触媒载体的制备方法
- 一种片状硅石/纳米TiO2复合材料及其制备方法
- TiO<base:Sub>2
- TiO
- 一种Nd<sub>2</sub>O<sub>3</sub>-Yb<sub>2</sub>O<sub>3</sub>改性的La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>-(Zr<sub>0.92</sub>Y<sub>0.08</sub>)O<sub>1.96</sub>复相热障涂层材料
- 无铅[(Na<sub>0.57</sub>K<sub>0.43</sub>)<sub>0.94</sub>Li<sub>0.06</sub>][(Nb<sub>0.94</sub>Sb<sub>0.06</sub>)<sub>0.95</sub>Ta<sub>0.05</sub>]O<sub>3</sub>纳米管及其制备方法
- 磁性材料HN(C<sub>2</sub>H<sub>5</sub>)<sub>3</sub>·[Co<sub>4</sub>Na<sub>3</sub>(heb)<sub>6</sub>(N<sub>3</sub>)<sub>6</sub>]及合成方法
- 磁性材料[Co<sub>2</sub>Na<sub>2</sub>(hmb)<sub>4</sub>(N<sub>3</sub>)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>]·(CH<sub>3</sub>CN)<sub>2</sub> 及合成方法
- 一种Bi<sub>0.90</sub>Er<sub>0.10</sub>Fe<sub>0.96</sub>Co<sub>0.02</sub>Mn<sub>0.02</sub>O<sub>3</sub>/Mn<sub>1-x</sub>Co<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> 复合膜及其制备方法
- Bi<sub>2</sub>O<sub>3</sub>-TeO<sub>2</sub>-SiO<sub>2</sub>-WO<sub>3</sub>系玻璃
- 荧光材料[Cu<sub>2</sub>Na<sub>2</sub>(mtyp)<sub>2</sub>(CH<sub>3</sub>COO)<sub>2</sub>(H<sub>2</sub>O)<sub>3</sub>]<sub>n</sub>及合成方法
- 一种(Y<sub>1</sub>-<sub>x</sub>Ln<sub>x</sub>)<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub>薄膜的直接制备方法
- 荧光材料(CH<sub>2</sub>NH<sub>3</sub>)<sub>2</sub>ZnI<sub>4</sub>
- Li<sub>1.2</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>Mn<sub>0.54</sub>O<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub>复合材料的制备方法





