[发明专利]双履带行走装置自适应转向系统及实现方法有效
申请号: | 201410134095.6 | 申请日: | 2014-04-03 |
公开(公告)号: | CN103950471A | 公开(公告)日: | 2014-07-30 |
发明(设计)人: | 王国强;刘如成;刘会凯;王勇澎;苏丽达;任云鹏;叶龙;李婧锡 | 申请(专利权)人: | 吉林大学 |
主分类号: | B62D11/04 | 分类号: | B62D11/04;B62D6/00;B62D101/00;B62D137/00 |
代理公司: | 长春吉大专利代理有限责任公司 22201 | 代理人: | 朱世林;王寿珍 |
地址: | 130012 吉*** | 国省代码: | 吉林;22 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 履带 行走 装置 自适应 转向 系统 实现 方法 | ||
技术领域
本发明涉及双履带行走装置智能控制技术领域,特别涉及一种基于模糊神经网络的双履带行走装置自适应转向系统及实现方法。
背景技术
双履带行走装置广泛应用于斗轮挖掘机、排土机、移动式破碎站等露天采矿装备,这些机械动辄数百吨,甚至上千吨。双履带行走装置采用电机驱动,通过变频器调整两条履带的转速实现转向。
现有技术中,露天采矿机械驾驶员在操纵双履带行走装置进行转向时,由于履带与地面之间存在滑移和滑转现象,导致其实际转向半径总是大于理论转向半径,双履带行走装置行驶轨迹的准确性较低,这直接影响到露天采矿机械的安全性和工作效率。
发明内容
针对现有技术中双履带行走装置转向时所发生的滑移和滑转现象,提出了一种双履带行走装置自适应转向系统及实现方法,采用模糊神经网络技术使行走装置的实际转向半径与理论所需的转向半径相吻合,实现智能转向。
为解决上述技术问题,本发明通过以下技术方案实现:
一种双履带行走装置自适应转向系统,包括GPS接收器1、光电编码器组2、数据采集卡3、工控机4、D/A转换单元5、驱动电机控制单元6和电源7。所述的光电编码器组2与数据采集卡3连接;GPS接收器1和数据采集卡3的输出端与工控机4的输入端连接,工控机4的输出端与D/A转换单元5的输入端连接;D/A转换单元5的输出端与驱动电机控制单元6连接;整个系统由电源7供电。
所述的GPS接收器1安装在双履带行走装置上,获取双履带行走装置的位置信息及行驶轨迹。GPS接收器1在跟踪四颗GPS卫星的过程中相对地球而运动,计算出相对这四颗卫星的距离,用这些信息可以得到自身的位置,即待测点的坐标x,y,z。
所述的光电编码器组2包括左、右两个光电编码器,分别安装在左、右履带架上,检测双履带行走装置左、右履带的行驶速度v1、v2,速度信息通过数据采集卡3后输送入工控机4进行处理。
所述的工控机4固定在驾驶室内,方便驾驶员通过显示屏查看自适应转向系统运行结果。所述的工控机4是自适应转向系统的核心,包含信号处理模块41、模糊神经网络控制模块42。工控机4中的信号处理模块41对GPS接收器1的位置信号处理和光电编码器组2的速度信 号处理。
所述的D/A转换单元5的输入端接工控机4,输出端接驱动电机控制单元6,D/A转换单元5将工控机4输出的两路电压数字信号转换为两路电压模拟信号,输出到驱动电机控制单元6。
所述的驱动电机控制单元6包括左、右变频器和左、右驱动电机。左、右变频器接收D/A转换单元5的两路电压模拟信号,从而控制左、右驱动电机,进而通过减速机控制左、右驱动轮,改变双履带行走装置转向半径。
所需的理论转向半径RL由驾驶员输入到自适应转向系统中,进行提前设定。
所述的GPS接收器1将采集得到的位置信息、行驶轨迹通过RS232接口传输入工控机4,工控机4中的信号处理模块41通过计算得到双履带行走装置行驶时的实际转向半径RS。根据实际转向半径RS和提前设定的理论转向半径RL得到双履带行走装置转向半径差e、半径差变化率ec。半径差e和半径差变化率ec作为模糊神经网络控制模块42的输入层节点。
工控机4中的模糊神经网络控制模块42的解模糊输出层IV输出信号为左右履带速度差Δv,再根据左、右履带的行驶速度v1、v2,计算实际左、右履带所需速度v1*、v2*:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于吉林大学,未经吉林大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201410134095.6/2.html,转载请声明来源钻瓜专利网。