[发明专利]基于字典学习和结构相似的图像超分辨率重建方法有效
申请号: | 201310030207.9 | 申请日: | 2013-01-25 |
公开(公告)号: | CN103077511A | 公开(公告)日: | 2013-05-01 |
发明(设计)人: | 张小华;焦李成;刘伟;马文萍;马晶晶;田小林;朱虎明;唐中和 | 申请(专利权)人: | 西安电子科技大学 |
主分类号: | G06T5/50 | 分类号: | G06T5/50 |
代理公司: | 陕西电子工业专利中心 61205 | 代理人: | 王品华;朱红星 |
地址: | 710071*** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 字典 学习 结构 相似 图像 分辨率 重建 方法 | ||
技术领域
本发明属于图像处理技术领域,涉及一种图像超分辨率重建方法,可用于各种自然图像的超分辨率重构,并且对小噪声有一定的抑制作用。
背景技术
在实际应用中,受成像系统物理分辨率限制,以及场景变化与天气条件等诸多因素的影响,实际成像过程中往往存在光学与运动模糊、欠采样和噪声等退化因素,导致成像系统只能得到质量较差、分辨率较低的图像或图像序列,通常满足不了实际的应用要求,这给后续的图像处理、分析和理解带来诸多困难,不利于人们正确地认识客观世界及其规律。
解决这一问题一个实用而有效的方法就是图像超分辨重建技术,其不需要昂贵的图像获取设备,只需要通过计算机软件的处理就能够获得更高分辨率的图像。一般说来,图像超分辨技术主要分为三种类型:基于插值的方法、基于重构的方法和基于学习的方法。其中:
基于插值的方法,如最邻近插值法和立方插值法,进行超分辨率重建时会造成图像表面比较模糊,高频信息会丢失严重,尤其是边缘锯齿化现象明显,严重影响图像质量。
基于重建的方法,由于人为强加的图像先验,导致高分辨图像边缘有锯齿化现象出现,并且在高放大因子条件下重建图像的质量严重退化。这些图像超分辨方法虽然存在过平滑、边缘有锯齿化现象等缺陷,但在技术上取得了一定突破,已经趋于成熟并在电子图像、互联网视频、数字电视等多个领域获得广泛应用。
基于学习的图像超分辨方法,是近年来由Freeman等人首先提出的一种图像分辨方法,其内容是通过马尔科夫随机场和先验知识来学习低分辨率图像和高分辨率图像之间的关系,然后重构出高分辨图像,但这种方法不能很好地保持高分辨图像的高频细节,并且计算复杂度较大,效率偏低。
发明内容
本发明的目的在于针对上述已有技术的不足,提出一种基于字典学习和结构相似的图像超分辨重建方法,以避免图像超分辨率重建时,导致重建图像的细节丢失严重,以及图像边缘有振铃现象。
实现本发明的技术思路是:利用结构相似SSIM方法和K-SVD算法相结合训练采集到的训练样本对,得到一个更加合理的字典对包括低分辨率字典和高分辨率字典,通过重建算法获得高分辨率、高清晰的图像。其具体步骤包括如下:
(1)从样本数据库中采集训练样本对M=[Mh;Ml]=[m1,...,mnum],其中,Mh表示高分辨率样本块,Ml表示对应的低分辨率样本块,mp表示M的第p列,1≤p≤num,num表示样本对的数目;
(2)利用结构相似SSIM和K-SVD的方法,以及步骤(1)中的训练样本对M,求得字典D1:
(2a)初始字典D;
(2b)利用结构相似SSIM求解训练样本对mp在字典D下的稀疏表示系数αp,其公式如下:
其中,λ1表示正则项参数,||||0表示向量的l0范数,S(mp,Dαp)用来度量mp和Dαp的结构相似性;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201310030207.9/2.html,转载请声明来源钻瓜专利网。
- 上一篇:一种瓶装饮料用的即饮即冲的饮料冲剂的储料盒
- 下一篇:单瓶红酒包装组件