[发明专利]一种制备微米及亚微米级V1-XWXO2粉末的方法有效
申请号: | 201210306115.4 | 申请日: | 2012-08-24 |
公开(公告)号: | CN102815943A | 公开(公告)日: | 2012-12-12 |
发明(设计)人: | 邹军涛;王献辉;梁淑华 | 申请(专利权)人: | 西安理工大学 |
主分类号: | C04B35/495 | 分类号: | C04B35/495;C04B35/626 |
代理公司: | 西安弘理专利事务所 61214 | 代理人: | 李娜 |
地址: | 710048*** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 制备 微米 sub 粉末 方法 | ||
技术领域
本发明属于材料制备技术领域,涉及一种V1-xWxO2粉体材料制备方法,尤其涉及一种高能球磨制备粒径为微米及亚微米级V1-xWxO2粉末的方法。
背景技术
高能球磨技术(即机械合金化法的一种)是通过机械力的作用,即球料、球磨罐、粉末之间反复碰撞,使得粉末颗粒得到反复挤压、变形、断裂、焊合的过程。此过程有助于粉末细化,并形成大量缺陷促使粉末原子间相互扩散,进行固态反应形成弥散分布的超细粒子合金粉末,从而获得性能优异的材料。
传统VO2制备方法是在CO2气氛中,用铂坩埚加热V2O5到1227℃,保持三天,该方法耗能大,效率低,且制备出的VO2粉体颗粒粗大。制备VO2粉体的方法还包括热解(NH4)2V6O16和(NH4)6[(VO)6(CO3)4(OH)9]·10H2O、真空还原法、喷雾分解VOSO4等,但这些方法均存在原料及设备昂贵、生产过程难以控制从而导致二氧化钒呈现混合价态等不足,故难以实现工业化生产。另一方面,随着掺杂量的增加,掺杂离子对二氧化钒离子取代的同时也导致二氧化钒晶格结构的变化,致使二氧化钒在相变前后光学、电学特性变化幅度减小。
发明内容
本发明的目的是提供一种制备微米及亚微米级V1-xWxO2粉末的方法,通过此方法可制备出V1-xWxO2粉末材料,且得到的V1-xWxO2粉末颗粒细小、掺杂元素固溶度高,相变前后光、电、磁等物理性变化明显。
本发明采用的技术方案为:一种制备微米及亚微米级V1-xWxO2粉末的方法,按照以下步骤实施:
步骤1:按照化学式V1-xWxO2称取纯度不低于99.9%的V2O5粉末、5(NH4)·12WO3·5H2O粉末及纯度不低于99.9%的C粉,将称取好的粉体装入球磨罐中;再向球磨罐中添加占总粉体质量2%~3%的过程控制剂,并加入粉末总质量10倍~40倍的磨球,密封球磨罐后,打开球磨罐循环冷却系统,球磨24~72小时,球磨机转速为200r/min,机械球磨结束后关闭循环冷却系统,待球料充分冷却后过筛得到粉末;
步骤2:将经步骤1混合好的粉末放入气氛保护管式炉中,通入保护气体,加热至600℃保温2~3小时,再升温到700~1000℃保温3~5小时,随炉冷却,得到V1-XWXO2粉末;
步骤3:取出经步骤2所得的V1-XWXO2粉末加入到球磨罐中,并加入V1-XWXO2粉末质量2%~3%的过程控制剂及与步骤1中相同数量的磨球,密封球磨罐后,打开球磨罐循环冷却系统,球磨时间与步骤1相同,高能球磨机转速为200~800r/min,高能球磨结束后关闭循环冷却系统,待球料充分冷却后取出粉末过筛,即制得粒径为微米级及亚微米级V1-xWxO2粉末。
本发明的特点还在于,
步骤1中所述化学式V1-xWxO2中x为0.01~0.1。
步骤1与步骤3中所述的球磨机为行星式高能球磨机。
步骤1与步骤3中所述的球磨罐材质为聚四氟乙烯。
步骤1与步骤3中所述磨球材质为不锈钢。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安理工大学,未经西安理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201210306115.4/2.html,转载请声明来源钻瓜专利网。
- 一种Nd<sub>2</sub>O<sub>3</sub>-Yb<sub>2</sub>O<sub>3</sub>改性的La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>-(Zr<sub>0.92</sub>Y<sub>0.08</sub>)O<sub>1.96</sub>复相热障涂层材料
- 无铅[(Na<sub>0.57</sub>K<sub>0.43</sub>)<sub>0.94</sub>Li<sub>0.06</sub>][(Nb<sub>0.94</sub>Sb<sub>0.06</sub>)<sub>0.95</sub>Ta<sub>0.05</sub>]O<sub>3</sub>纳米管及其制备方法
- 磁性材料HN(C<sub>2</sub>H<sub>5</sub>)<sub>3</sub>·[Co<sub>4</sub>Na<sub>3</sub>(heb)<sub>6</sub>(N<sub>3</sub>)<sub>6</sub>]及合成方法
- 磁性材料[Co<sub>2</sub>Na<sub>2</sub>(hmb)<sub>4</sub>(N<sub>3</sub>)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>]·(CH<sub>3</sub>CN)<sub>2</sub> 及合成方法
- 一种Bi<sub>0.90</sub>Er<sub>0.10</sub>Fe<sub>0.96</sub>Co<sub>0.02</sub>Mn<sub>0.02</sub>O<sub>3</sub>/Mn<sub>1-x</sub>Co<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> 复合膜及其制备方法
- Bi<sub>2</sub>O<sub>3</sub>-TeO<sub>2</sub>-SiO<sub>2</sub>-WO<sub>3</sub>系玻璃
- 荧光材料[Cu<sub>2</sub>Na<sub>2</sub>(mtyp)<sub>2</sub>(CH<sub>3</sub>COO)<sub>2</sub>(H<sub>2</sub>O)<sub>3</sub>]<sub>n</sub>及合成方法
- 一种(Y<sub>1</sub>-<sub>x</sub>Ln<sub>x</sub>)<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub>薄膜的直接制备方法
- 荧光材料(CH<sub>2</sub>NH<sub>3</sub>)<sub>2</sub>ZnI<sub>4</sub>
- Li<sub>1.2</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>Mn<sub>0.54</sub>O<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub>复合材料的制备方法