[发明专利]一种基于滑模神经网络的智能车轨迹跟踪控制方法有效

专利信息
申请号: 201711455768.8 申请日: 2017-12-28
公开(公告)号: CN108227491B 公开(公告)日: 2021-11-16
发明(设计)人: 郑太雄;何招;杨新琴;李芳;黄帅;田云浪;汪涛 申请(专利权)人: 重庆邮电大学
主分类号: G05B13/04 分类号: G05B13/04;G05D1/02;G05D1/12
代理公司: 重庆市恒信知识产权代理有限公司 50102 代理人: 刘小红
地址: 400065 重*** 国省代码: 重庆;50
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明请求保护一种基于滑模神经网络的智能车轨迹跟踪控制方法,用于智能车轨迹跟踪控制的技术领域,以解决轨迹跟踪过程中存在的稳定性和控制精度的问题。该方法包括:设计一种基于滑模的轨迹跟踪控制器,通过控制前轮转角来实现横向跟踪控制,然后通过RBF神经网络补偿前轮转角来提高轨迹跟踪控制的精度,减小滑模的抖振现象。与现有技术相比,本发明在实现轨迹跟踪的同时能极大地提高轨迹跟踪控制的精度,减小滑模控制器的抖振现象,加强了控制器的稳定性和鲁棒性。
搜索关键词: 一种 基于 神经网络 智能 轨迹 跟踪 控制 方法
【主权项】:
1.一种基于滑模神经网络的智能车轨迹跟踪控制方法,其特征在于,包括以下步骤:A、根据智能车上的环境感知和轨迹规划模块规划出一条参考轨迹,从参考轨迹上提取出车辆期望横摆角θp,然后根据智能车辆的传感器采集到的车辆行驶信息得出车辆实际横摆角θ,求出车辆实际横摆角和期望横摆角的误差为θe;B、建立智能车的二自由度动力学模型,把步骤A中的横摆角误差θe传输给下层的滑模横向控制器,通过控制前轮转角δf来实现横向控制;考虑到建立的动力学模型的不确定性,采用RBF神经网络来对前轮转角进行补偿,从而优化横向跟踪控制。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆邮电大学,未经重庆邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201711455768.8/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top