[发明专利]一种基于滑模神经网络的智能车轨迹跟踪控制方法有效

专利信息
申请号: 201711455768.8 申请日: 2017-12-28
公开(公告)号: CN108227491B 公开(公告)日: 2021-11-16
发明(设计)人: 郑太雄;何招;杨新琴;李芳;黄帅;田云浪;汪涛 申请(专利权)人: 重庆邮电大学
主分类号: G05B13/04 分类号: G05B13/04;G05D1/02;G05D1/12
代理公司: 重庆市恒信知识产权代理有限公司 50102 代理人: 刘小红
地址: 400065 重*** 国省代码: 重庆;50
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 神经网络 智能 轨迹 跟踪 控制 方法
【说明书】:

发明请求保护一种基于滑模神经网络的智能车轨迹跟踪控制方法,用于智能车轨迹跟踪控制的技术领域,以解决轨迹跟踪过程中存在的稳定性和控制精度的问题。该方法包括:设计一种基于滑模的轨迹跟踪控制器,通过控制前轮转角来实现横向跟踪控制,然后通过RBF神经网络补偿前轮转角来提高轨迹跟踪控制的精度,减小滑模的抖振现象。与现有技术相比,本发明在实现轨迹跟踪的同时能极大地提高轨迹跟踪控制的精度,减小滑模控制器的抖振现象,加强了控制器的稳定性和鲁棒性。

技术领域

本发明属于智能车轨迹跟踪控制技术领域,涉及一种基于滑模神经网络的智能车轨迹跟踪控制方法。

背景技术

智能车在普通车辆的基础上,集成了多种先进的传感器和控制器,并通过这些装置实现人-车-路的智能信息交换,使智能车辆具有自主导航、自动驾驶、自主循迹和自动跟踪等多项功能。它是未来车辆技术的主体发展方向,一直备受国防事业、汽车工业、高校和科研机构的关注,智能车的发展对解决交通拥堵和事故,降低能源消耗都有极大的意义。轨迹跟踪是实现无人驾驶的重要环节,它是对轨迹规划器预先规划或者给定的参考轨迹进行跟踪,并在跟踪过程中保证车辆的安全性、舒适性和有效性,它是无人驾驶系统的基本问题之一。

目前各类的智能辅助驾驶系统中,都或多或少的涉及到了车辆的轨迹跟踪控制技术,而横向跟踪控制技术对于研究轨迹跟踪控制方法具有重要的意义,其实质上是转向控制,通过控制车辆的方向盘来实现不同工况下的自动跟踪。

智能车轨迹跟踪的研究一直是一个热点,同时也是一个难点。由于车辆是一个强非线性、高度耦合的复杂系统,而且车辆参数的不确定性和外界环境的干扰,因而很难建立精确的车辆动力学模型,再加上行驶工况的复杂多变,这些无疑给车辆的轨迹跟踪控制带来了极大的困难。

文献[1]较为全面的总结了智能车在轨迹跟踪控制方面研究的相关成果。文献[2]在郭孔辉院士提出的预瞄-跟随理论的基础上,建立了驾驶员最优预瞄侧向加速度模型和最优曲率模型,来完成路径跟踪任务。郭烈等人[3]基于车辆运动学模型的反馈控制来实现在弯道上的变道跟踪控制。文献[4]提出了基于遗传优化的模糊控制算法,通过遗传算法对横向模糊控制器的隶属度函数参数和控制规则优化更新,通过仿真和实车进行了验证;该方法在低速时跟踪效果较好,当车速较高时,车辆的横向偏差会逐渐增大,导致控制效果变差。文献[5]基于模型预测轨迹跟踪控制方法,使用线性动态化跟踪误差来预测未来的系统行为。但是当存在较大的跟踪误差时,系统的鲁棒性存在不足,自适应性较差。文献[6]讨论了一种基于非奇异的快速终端滑模(NFTSM)的综合动力学控制算法,用于改善车辆临界横向运动的稳定性;仿真结果表明该方法改善了横摆角速度和侧滑角控制器的瞬态响应,但是滑模面存在抖振现象,影响了控制的精度。文献[7]采用了基于六自由度的非线性模型设计了一种非奇异终端滑模控制器(NTSMC),该方法的优点是鲁棒性较好,提高了抗干扰的能力;但是由于建立的数学模型比较复杂,所以在模型求解方面会增加运算的负担,实时性不能得到保证。

上述的控制方法都可以实现对参考轨迹的跟踪,但是在轨迹跟踪过程中存在精度不足的问题尚未解决,本发明的创新点在于:解决了轨迹跟踪过程中存在的跟踪误差,提高了跟踪的精度,减小了滑模控制器的抖振,保证了跟踪控制器的鲁棒性和抗干扰能力。

参考文献:

[1]Czapla T,Wrona J.Technology Development of Military Applicationsof Unmanned Ground Vehicles[M]//Vision Based Systemsfor UAVApplications.Springer International Publishing,2013:293-309.

[2]Guo K,Fancher P S.Preview-follower method for modelling closed-loop vehicle directional control[J].1983.

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆邮电大学,未经重庆邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201711455768.8/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top