[发明专利]一种基于机器学习的电网全局延时态势感知方法有效
申请号: | 201611160493.0 | 申请日: | 2016-12-15 |
公开(公告)号: | CN106779215B | 公开(公告)日: | 2021-12-03 |
发明(设计)人: | 饶玮;蒋静;胡斌;裘洪彬;赵兵兵;曹军威;明阳阳;陈建会 | 申请(专利权)人: | 全球能源互联网研究院;清华大学;国家电网公司 |
主分类号: | G06Q10/04 | 分类号: | G06Q10/04;G06Q50/06;G06N20/00 |
代理公司: | 北京安博达知识产权代理有限公司 11271 | 代理人: | 徐国文 |
地址: | 102209 北京市昌平*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及一种基于机器学习的电网全局延时态势感知方法,所述方法包括:利用采样节点的测量值,建立样本矩阵;根据所述样本矩阵中各样本中的电压值标记各样本的稳定性标记值;压缩所述样本矩阵的维度,并利用压缩维度后的样本矩阵训练分类器;利用所述分类器预测下一时刻的电网状态稳定概率;本发明提供的方法,利用机器学习算法对电网电压稳定性进行预测,进一步综合多个节点给出电网态势感知的评估结果,在训练每一个节点分类器的时候,将特征选取的时段和预测时间节点拉开,形成一种延时的预测方法,对复杂系统有着更好的还原效果。 | ||
搜索关键词: | 一种 基于 机器 学习 电网 全局 延时 态势 感知 方法 | ||
【主权项】:
一种基于机器学习的电网全局延时态势感知方法,其特征在于,所述方法包括:利用采样节点的测量值,建立样本矩阵;根据所述样本矩阵中各样本中的电压值标记各样本的稳定性标记值;压缩所述样本矩阵的维度,并利用压缩维度后的样本矩阵训练分类器;利用所述分类器预测下一时刻的电网状态稳定概率。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于全球能源互联网研究院;清华大学;国家电网公司,未经全球能源互联网研究院;清华大学;国家电网公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201611160493.0/,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06 计算;推算;计数
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理