[发明专利]基于数据驱动量化特征多粒度的行星齿轮箱故障诊断方法在审

专利信息
申请号: 201710950672.2 申请日: 2017-10-13
公开(公告)号: CN107766882A 公开(公告)日: 2018-03-06
发明(设计)人: 于军 申请(专利权)人: 哈尔滨理工大学
主分类号: G06K9/62 分类号: G06K9/62
代理公司: 暂无信息 代理人: 暂无信息
地址: 150080 黑龙*** 国省代码: 黑龙江;23
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 数据 驱动 量化 特征 粒度 行星 齿轮箱 故障诊断 方法
【说明书】:

技术领域

发明涉及一种故障诊断方法,尤其涉及基于数据驱动量化特征多粒度的行星齿轮箱故障诊断方法。

背景技术

行星齿轮箱已广泛应用于直升机、风力发电机或运输车辆等设备的机械传动系统中。它具有体积小、结构紧凑、精度高、传动比大和承载能力强等特点。然而,由于长期运行在高速重载等复杂恶劣环境,行星齿轮箱中的太阳轮、行星轮、行星架和内齿圈等关键零件极易发生裂纹或点蚀等故障;从而诱发设备失灵,造成巨大的经济损失,甚至导致操作人员伤亡等严重后果。因此,为保障设备的正常运行,降低设备的维护成本,防止恶性事故的发生,行星齿轮箱故障诊断技术的研究具有十分重要的意义。

近年来,国内外学者对行星齿轮箱的故障诊断问题进行了一定地研究,并提出了一些颇具代表性的故障诊断方法,这些方法大致可分为三类:模型法、信号处理法、数据驱动法。模型法通过建立行星齿轮箱的动力学模型,选取各种统计参数作为判断指标,实现行星齿轮箱的故障诊断。典型的动力学模型有:纯扭转模型、刚性多体模型、柔性多体模型等。模型法虽然能清晰地分析故障机理,可实现残余寿命预测;但在动力学建模中需满足多种假设,不断地修正模型参数,难以建立精确的故障模型。而且,大多建立正常行星齿轮箱的动力学模型,较少对故障行星齿轮箱进行建模分析,无法准确地反映传动模式。

信号处理法根据采集的振动或声发射信号的测量和分析,提取信号中的故障频率,从而达到故障诊断的目的。典型的信号处理法有:小波变换、EEMD、稀疏表示等。信号处理法的优点在于信号易于采集,便于记录和处理,以及故障灵敏度高,能够实现在线监测和实时故障特征提取;同时传感器安装于箱体表面,无需拆卸行星齿轮箱,从而实现无损检测。因此基于信号处理法的行星齿轮箱故障诊断已成为研究热点之一。然而,由于传感器的位置固定不变,而行星轮不但自转,还绕太阳轮公转;多组信号因传递路径的影响而产生幅值调制和相位调制。调制现象使信号具有强烈的非线性和非平稳性特点,这限制了信号处理法在行星齿轮箱故障诊断中的应用。

数据驱动法将特征空间映射到决策空间,通过构建两个空间的函数关系,完成故障诊断的任务。典型的数据驱动法有:人工神经网络、证据理论、贝叶斯网络、模糊逻辑、支持向量机等。数据驱动法大多无需额外的先验知识,无需精确的解析模型,通过训练样本推断待诊样本的故障类型。因此,数据驱动法在行星齿轮箱的故障诊断中具有重要的应用价值。然而,传感器失灵、通讯迟滞或数据离散化等多种原因会导致行星齿轮箱故障诊断信息不完备情况的发生,这给数据驱动法的应用带来了巨大的挑战。

发明内容

本发明的目的是为了解决不完备信息下行星齿轮箱的故障诊断问题,为行星齿轮箱的故障诊断提供一种新颖的解决思路,而提出了基于数据驱动量化特征多粒度的行星齿轮箱故障诊断方法。

基于数据驱动量化特征多粒度的行星齿轮箱故障诊断方法,其特征在于该方法包括以下步骤:

步骤一、根据采集到的典型故障行星齿轮箱特征信号,提取故障诊断特征,建立不完备故障诊断信息系统;

步骤二、采用数据驱动量化特征关系对不完备故障诊断信息系统进行分析,计算所有实例间的特征相似度,获得满足数据驱动量化特征关系的特征集;

步骤三、利用基于悲观数据驱动量化特征多粒度模型的属性约简算法,提取故障诊断决策规则;

步骤四、根据故障诊断决策规则构建朴素贝叶斯分类器模型,推断待诊行星齿轮箱状态。

所述步骤三中基于悲观数据驱动量化特征多粒度模型的属性约简算法;具体步骤为:

步骤三一、计算各实例间的特征相似度VRC(x,y),以及各阈值α(xi),i=1,2,...,n;

步骤三二、确定满足数据驱动量化特征关系的特征集分别为VKC(xi);

步骤三三、计算悲观数据驱动量化特征多粒度模型下,属性子集B的属性依赖度

步骤三四、依次对每一个征兆属性值ck,k=1,2,...,n进行如下操作;

步骤三五、删除征兆属性值c1,计算新的属性依赖度γ';

步骤三六、如果属性依赖度那么征兆属性值c1是冗余的,否则征兆属性值c1必不可少的;

步骤三七、对其它征兆属性值重复步骤三五和步骤三六,直至最后一个征兆属性值;

步骤三八、删除所有冗余的征兆属性值,构建决策规则。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于哈尔滨理工大学,未经哈尔滨理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201710950672.2/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top