[发明专利]一种基于深度学习算法进行基因关联分析的方法有效

专利信息
申请号: 201710174877.6 申请日: 2017-03-22
公开(公告)号: CN107025386B 公开(公告)日: 2020-07-17
发明(设计)人: 颜成钢;盛再超;彭冬亮;薛安克 申请(专利权)人: 杭州电子科技大学
主分类号: G16B20/20 分类号: G16B20/20;G16B20/30;G16B50/00
代理公司: 杭州君度专利代理事务所(特殊普通合伙) 33240 代理人: 杜军
地址: 310018 浙*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 深度 学习 算法 进行 基因 关联 分析 方法
【说明书】:

发明公开了一种基于深度学习算法进行基因关联分析的方法。本发明基于SNP集分析的方法需要借鉴来自同一个体不同位置但是相关的SNP信息,根据现有生物学知识将个体的SNP分成多个单元。首先在整个染色体层面,根据生物学相关知识,如接近基因组特征的原则,将全体SNP划分成多个SNP集。划分结束后,每一个SNP集输入到搭建的双向LSTM网络中,该网络是一个循环神经网络,它的状态包含上一时刻的陈旧信息,同时又是下一时刻权值变化的依据。LSTM网络学习完成后,可以通过网络的计算,输出对输入数据所需关注程度。本发明具有更好的敏感度和特异度,为临床医学、遗传病学和预防医学的发展研究开拓了新的领域。

技术领域

本发明具体涉及一种基于LSTM(Long Short-Term Memory)网络进行的基因关联分析方法,所述方法基于深度卷积神经网络和递归神经网络模型,属于生物信息学技术领域。

背景技术

针对基因染色体碱基对与致病的关联研究一直是生物信息学的核心研究内容之一。在庞大的数据库中进行数据挖掘,深入了解生物的复杂性,利用现有知识与数据尽最大可能分析,但是由于基因存在多态性,在生物群体中,经常存在两种或多种不连续的变异型或基因型或等位基因,因此选用具有有效性、智能化等特点的机器学习方法来对基因多态性进行研究,可以为临床医学、遗传病学和预防医学的发展研究开拓新的领域。

传统的研究方法利用GWAS(全基因组关联分析)进行病例控制分析,该方法需要对每一个个体的SNP和致病风险进行测定和评估,然后用于鉴定与疾病易感性相关的SNP(单核苷酸的多态性)。该方法需要数量巨大的患病病例以及健康病例的SNP基因分型,且局限于需要检测multi-SNP和上位效应,尽管在多种疾病分析检验中有所成就,但是对于全基因组的分析仍然处于劣势。

改进方法则是利用机器学习的一些模型,例如支持向量机(SVM)、遗传算法(GA)、马尔科夫统计模型(MM)、贝叶斯推理等方法,单独使用或者结合各自优点使用能够提高生物信息学中解决问题的能力。但是传统方法的劣势在于无法处理变长序列,只能使用固定长度的序列片段作为输入,虽然获得了较高的预测效果,但是在随后的研究中发现,序列中距离间隔较大的区域中的残基之间会有相互影响的关系,研究人员不得不考虑这些误差。

发明内容

本发明的目的在于克服现有技术的不足,提供一种基于深度学习算法处理全基因组分析中对于基因表现型与易感相关性分析的方法,利用深度卷积网络结合LSTM模型对SNP集进行分析,从而提高分析的准确率。

本发明采用了另一种分析策略,结合现有的生物学知识对SNP进行分组,在基因层面基于SNP集的分析需要借鉴来自不同但是相关的SNP信息,利用LSTM网络进行分析研究。如图2所示,该网络具有Input门、Forget门、Output门,可以在学习过程中选择性的进行记忆和遗忘,具有对序列强大的处理和预测能力,系统的输出将会保留在内部网络中,与系统下一阶段的输入一起相互作用,决定下一时间的输出。该循环网络彰显了动力学系统的反馈概念,用来刻画复杂的相互依存和依赖问题。因此该方法对可重复性、可解释性以及分析结果的可能性有显著的提高。

本发明的技术方案如下:

基于SNP集分析的方法需要借鉴来自同一个体不同位置但是相关的SNP信息,根据现有生物学知识将个体的SNP分成多个单元。首先在整个染色体层面,根据生物学相关知识,如接近基因组特征的原则,将全体SNP划分成多个SNP集。划分结束后,每一个SNP集输入到搭建的双向LSTM网络中,该网络是一个循环神经网络,它的状态包含上一时刻的陈旧信息,同时又是下一时刻权值变化的依据。LSTM网络学习完成后,可以通过网络的计算,输出对输入数据所需关注程度。

为实现上述目的,本发明包括以下步骤:

(一)获得SNP集数据

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于杭州电子科技大学,未经杭州电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201710174877.6/2.html,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top