[发明专利]一种燃料电池性能退化预测方法有效
申请号: | 202310054785.X | 申请日: | 2023-02-03 |
公开(公告)号: | CN116306226B | 公开(公告)日: | 2023-10-20 |
发明(设计)人: | 陶孜菡;张楚;张越;熊金琳;彭甜;王业琴;李正波;索雷明;黄凤芝;胡浩文 | 申请(专利权)人: | 淮阴工学院 |
主分类号: | G06F30/27 | 分类号: | G06F30/27;H01M8/04298;G06N3/006 |
代理公司: | 淮安市科文知识产权事务所 32223 | 代理人: | 吴晶晶 |
地址: | 223005 江苏省*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开一种燃料电池性能退化预测方法,采集燃料电池电压退化数据,采用SG滤波器对原始数据进行平滑处理,运用灰色关联度分析对数据进行辅助变量的选取,建立基于Bagging集成学习和时间卷积网络性能退化预测模型;采用半数均匀初始化对蝠鲼觅食优化算法的种群进行初始化操作,在链式觅食的位置更新中引入自适应权重和适应度‑距离平衡策略,得到IMRFO;运用Bagging集成学习对多个弱学习器进行融合预测,并利用第一层的预测结果对TCN模型进行训练,同时使用IMRFO对TCN进行参数优化,获得最佳参数,并将最优参数和测试数据样本输入到TCN预测模型中得到最终预测结果。与现有技术相比,本发明能够有效地预测燃料电池电压退化趋势,提高性能退化预测模型精度。 | ||
搜索关键词: | 一种 燃料电池 性能 退化 预测 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于淮阴工学院,未经淮阴工学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202310054785.X/,转载请声明来源钻瓜专利网。