[发明专利]一种基于深度学习的在线实时预测构件状态的方法在审

专利信息
申请号: 202310046440.X 申请日: 2023-01-31
公开(公告)号: CN116070484A 公开(公告)日: 2023-05-05
发明(设计)人: 卢轶;李文博;董健;朱柯霖;汪晨;吴斌;孙桂芳;蔡明霞 申请(专利权)人: 南京林业大学
主分类号: G06F30/23 分类号: G06F30/23;G06F30/27;G06Q10/04;G06Q50/04;G06N3/08;G06T17/00;G06N3/0464;G06F119/14
代理公司: 南京众联专利代理有限公司 32206 代理人: 许小莉
地址: 210037 *** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开一种基于深度学习的在线实时预测构件状态的方法,本发明首先采集不同工艺参数下熔池以及沉积层的尺寸形貌,并计算出材料从熔融态收缩至凝固状态产生的收缩量;再将采集到熔池和沉积层尺寸形貌、沉积层收缩量、工艺参数作为输入量,在有限元仿真中计算出制造中各点的应力值,并将这些参数作多信息特征融合处理后,输出制造过程中构件的实时应力值;通过大量的实验样本,得到其制造过程中实时应力曲线图和构件形貌图并一一对应,将样本分类为正常、变形、预裂和开裂四种状态,通过卷积神经网络训练,输出构件在制造过程中是何种状态。该方法可获得构建的应力和状态,有效解决制造过程出现变形、裂纹等缺陷以便及时调整和优化工艺参数。
搜索关键词: 一种 基于 深度 学习 在线 实时 预测 构件 状态 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京林业大学,未经南京林业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202310046440.X/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top