[发明专利]一种基于深度学习的涡振响应预测方法有效

专利信息
申请号: 202210979194.9 申请日: 2022-08-16
公开(公告)号: CN115408931B 公开(公告)日: 2023-04-18
发明(设计)人: 赖马树金;张泽宇;金耀;徐文城 申请(专利权)人: 哈尔滨工业大学;中交公规土木大数据信息技术(北京)有限公司
主分类号: G06F30/27 分类号: G06F30/27;G06F30/28;G06F17/11;G06F18/25;G06N3/048;G06N3/08;G06F111/10;G06F113/08
代理公司: 哈尔滨市阳光惠远知识产权代理有限公司 23211 代理人: 孙莉莉
地址: 150001 黑龙*** 国省代码: 黑龙江;23
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提出一种基于深度学习的涡振响应预测方法。本发明所述方法融合了龙格库塔方法作为网络的深度推进格式;不同于在以往的经验模型中由于涡振为大幅值振动而省略方程右侧显含时间的由漩涡脱落而引起的纯力项,网络将时间以融入龙格库塔数值格式的方法巧妙的考虑到其影响,将非自治项考虑到了非线性方程中,相比于传统的预测建模方法更加合理且精确;网络在CFD生成的一阶涡振数据上进行验证,结果证明该方法具有长时间预测的能力,是对涡振响应进行长时间预测建模的全新方法。
搜索关键词: 一种 基于 深度 学习 响应 预测 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于哈尔滨工业大学;中交公规土木大数据信息技术(北京)有限公司,未经哈尔滨工业大学;中交公规土木大数据信息技术(北京)有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202210979194.9/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top