[发明专利]一种基于深度强化学习的滚动轴承故障类型识别方法在审
申请号: | 202210553427.9 | 申请日: | 2022-05-20 |
公开(公告)号: | CN114896733A | 公开(公告)日: | 2022-08-12 |
发明(设计)人: | 李帷韬;张雪松;侯建平;管树志;胡平路;杨盛世;孙伟;李奇越;张倩 | 申请(专利权)人: | 合肥工业大学 |
主分类号: | G06F30/17 | 分类号: | G06F30/17;G06F30/27;G06K9/62;G06N3/04;G06N3/08;G01M13/04 |
代理公司: | 安徽省合肥新安专利代理有限责任公司 34101 | 代理人: | 陆丽莉;何梅生 |
地址: | 230009 安*** | 国省代码: | 安徽;34 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于深度强化学习的滚动轴承故障类型识别方法,其步骤包括:1、采集滚动轴承一维时间序列故障数据;2、连续小波变换算法对故障数据进行预处理;3、人工标注并进行归一化位置编码;4、建立基于改进的Transformer‑LSTM双分支异构网络和强化学习网络;5、对网络进行训练得到强化学习最优训练模型;6、输入测试集到最优训练模型得到最优故障诊断分类识别效果。本发明通过强化学习的方法,提高了滚动轴承故障分类识别的准确性,同时使得模型具有更好的抗噪性能。 | ||
搜索关键词: | 一种 基于 深度 强化 学习 滚动轴承 故障 类型 识别 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于合肥工业大学,未经合肥工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202210553427.9/,转载请声明来源钻瓜专利网。