[发明专利]一种基于多模态宽度学习的潜在抑郁评估系统有效
申请号: | 202210381225.0 | 申请日: | 2022-04-13 |
公开(公告)号: | CN114462554B | 公开(公告)日: | 2022-07-05 |
发明(设计)人: | 蔡明宸 | 申请(专利权)人: | 华南理工大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06N3/04;G06N3/08;G16H50/30;A61B5/16 |
代理公司: | 广州市华学知识产权代理有限公司 44245 | 代理人: | 霍健兰 |
地址: | 510640 广*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供了一种基于多模态宽度学习的潜在抑郁评估系统,包括信号采集模块、预处理模块、编码器、解码器、特征层融合模块和宽度学习系统;信号采集模块用于采集生理信号数据;编码器用于特征提取;解码器用于数据重构;特征层融合模块用于特征向量聚合;宽度学习系统用于进行计算,得出抑郁风险等级的评估结果;在各个解码器与编码器之间通过自编码器重构损失函数进行关联;各个编码器输出通过特征关联性损失函数进行关联。该系统可对个体抑郁风险等级进行评估,提高抑郁症检测与诊断的便捷程度,提升诊断效率;综合采用多模态生理信号数据,通过特征关联性损失函数将不同模态的特征向量进行关联,可全面、客观地对潜在抑郁风险进行评估。 | ||
搜索关键词: | 一种 基于 多模态 宽度 学习 潜在 抑郁 评估 系统 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华南理工大学,未经华南理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202210381225.0/,转载请声明来源钻瓜专利网。