[发明专利]基于四维注意力卷积循环神经网络的疲劳分类方法在审

专利信息
申请号: 202210359058.X 申请日: 2022-04-07
公开(公告)号: CN114781442A 公开(公告)日: 2022-07-22
发明(设计)人: 郜东瑞;王珂杰;汪曼青;曾帅;陆全平;张永清 申请(专利权)人: 成都信息工程大学
主分类号: G06K9/00 分类号: G06K9/00;G06N3/04;G06N3/08;A61B5/00;A61B5/16
代理公司: 成都虹盛汇泉专利代理有限公司 51268 代理人: 陈婷
地址: 610225 四川省成都*** 国省代码: 四川;51
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于四维注意力卷积循环神经网络的疲劳分类方法,包括以下步骤:S1、采集脑电信号并输入四维特征提取模块,提取脑电信号的四维特征;S2、将提取到的四维特征输入注意力模块,到拥有空间‑通道注意力的特征;S3、将拥有空间‑通道注意力的特征输入卷积循环神经网络模块,进行疲劳分类。本发明解决了基于脑电信号的神经网络可解释性差的问题,它不仅提高了分类的准确率,并且通过它可以从空间和频带的角度进行可视化,提高网络的可解释性。使用深度可分离卷积层,相比于普通卷积层,模型大小降低了70%左右,准确率却提高1.44%,并且提出一种双分支深度可分离卷积,对空间信息的处理上融合了两种尺度感受野,进一步将准确率提高0.45%。
搜索关键词: 基于 注意力 卷积 循环 神经网络 疲劳 分类 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于成都信息工程大学,未经成都信息工程大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202210359058.X/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top