[发明专利]基于图正则化半监督字典学习的工业信号故障识别方法在审
| 申请号: | 202210191693.1 | 申请日: | 2022-02-28 |
| 公开(公告)号: | CN114548185A | 公开(公告)日: | 2022-05-27 |
| 发明(设计)人: | 陈晓方;周杰;谢世文;谢永芳;张红亮 | 申请(专利权)人: | 中南大学 |
| 主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/62;G06N3/04;G06N3/08 |
| 代理公司: | 长沙轩荣专利代理有限公司 43235 | 代理人: | 丁耀鹏 |
| 地址: | 410000 湖南*** | 国省代码: | 湖南;43 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | 本公开实施例中提供了一种基于图正则化半监督字典学习的工业信号故障识别方法,属于数据识别技术领域,具体包括:采集目标设备的工业信号数据;将有标签数据和无标签数据作为训练数据集并输入基于图正则半监督字典学习模型,得到训练集稀疏编码、置信度矩阵以及结构字典;将测试集信号和结构字典带入分类模型,得到测试集信号的测试集稀疏编码;计算测试集信号的重构误差,并根据重构误差识别测试集信号的故障类别。通过本公开的方案,将字典学习与半监督学习以及流行学习结合,既能保存数据的流形结构,又能学习无标签数据的特征,以此增强模型学习的判别性及可靠性,提高了识别的效率、精准度和适应性。 | ||
| 搜索关键词: | 基于 正则 监督 字典 学习 工业 信号 故障 识别 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中南大学,未经中南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202210191693.1/,转载请声明来源钻瓜专利网。





