[发明专利]基于Transformer引导卷积神经网络的脑电信号分类方法在审
申请号: | 202210188441.3 | 申请日: | 2022-02-28 |
公开(公告)号: | CN114564991A | 公开(公告)日: | 2022-05-31 |
发明(设计)人: | 李畅;蔡国超;黄晓阳;刘羽;宋仁成;成娟;陈勋 | 申请(专利权)人: | 合肥工业大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 安徽省合肥新安专利代理有限责任公司 34101 | 代理人: | 陆丽莉;何梅生 |
地址: | 230009 安*** | 国省代码: | 安徽;34 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于Transformer引导卷积神经网络的脑电分类方法,其步骤包括:1,对于原始EEG数据进行预处理,包括去除噪声、片段分割以及利用短时傅里叶变换提取时间频率特征;2,建立基于Transformer引导卷积神经网络的深度学习模型,初始化网络参数;3,输入数据对网络进行训练,优化网络参数,获得最优分类模型用于实现脑电信号的分类。本发明能够显著提升脑电信号分类准确率,从而提升脑电信号在医疗等领域中的应用价值。 | ||
搜索关键词: | 基于 transformer 引导 卷积 神经网络 电信号 分类 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于合肥工业大学,未经合肥工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202210188441.3/,转载请声明来源钻瓜专利网。
- 基于Transformer+LSTM神经网络模型的商品销量预测方法及装置
- 一种基于Transformer模型自然场景文字识别方法
- 一种深度Transformer级联神经网络模型压缩算法
- 点云分割方法、系统、介质、计算机设备、终端及应用
- 基于Transformer的中文智能对话方法
- 一种基于改进Transformer模型的飞行器故障诊断方法和系统
- 一种基于Transformer模型的机器翻译模型优化方法
- 基于Transformer和增强交互型MPNN神经网络的小分子表示学习方法
- 基于U-Transformer多层次特征重构的异常检测方法及系统
- 基于EfficientDet和Transformer的航空图像中的飞机检测方法