[发明专利]一种基于图神经网络的通用缺陷检测方法在审
申请号: | 202210167928.3 | 申请日: | 2022-02-23 |
公开(公告)号: | CN114489785A | 公开(公告)日: | 2022-05-13 |
发明(设计)人: | 王豫;张弛;徐安孜;陈谦;王林章 | 申请(专利权)人: | 南京大学 |
主分类号: | G06F8/75 | 分类号: | G06F8/75;G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 南京知识律师事务所 32207 | 代理人: | 张苏沛 |
地址: | 210023 江苏*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开一种基于图神经网络的通用缺陷检测方法,包括以下步骤:程序预处理,提取程序语义信息图节点的语义特征值,并对图形表示向量化,生成模型需要的输入形式;构建基于图神经网络的通用缺陷预测模型,用标签标记缺陷样本分布,训练图神经网络的缺陷预测能力,将训练过程中的最优模型作为通用缺陷检测模型;使用通用缺陷检测模型对待测程序进行预测,自定义目标缺陷类型,通用缺陷基于距离排名的缺陷预测方法进行预测。特定缺陷为人工确认预测结果,为待测程序添加标签并使用模型进行学习,强化模型预测能力。本发明有效解决了目前的基于机器学习的缺陷预测方法需要大量训练数据学习缺陷特征,无法预测不在训练集中的缺陷类型的问题。 | ||
搜索关键词: | 一种 基于 神经网络 通用 缺陷 检测 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京大学,未经南京大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202210167928.3/,转载请声明来源钻瓜专利网。