[发明专利]一种基于程序切片的深度神经网络类型推导方法在审
申请号: | 202210052087.1 | 申请日: | 2022-01-17 |
公开(公告)号: | CN114580641A | 公开(公告)日: | 2022-06-03 |
发明(设计)人: | 冯洋;燕言言;范弘铖;李玉莹;徐宝文 | 申请(专利权)人: | 南京大学 |
主分类号: | G06N5/04 | 分类号: | G06N5/04;G06N3/04;G06N3/08 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 210023 江苏省南京市栖霞*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及一种基于程序切片的深度神经网络类型推导方法,首先获取大量包含类型标注信息的动态语言程序项目,提取项目中的类型信息,构建类型信息数据集;然后用编码技术将提取的类型信息数据集嵌入成向量形式;最后用嵌入向量训练深度神经网络模型并使用训练好的模型预测程序变量类型或函数签名。本发明目的在于解决目前存在的动态语言程序类型推导效率低、准确率低的问题,提高动态语言程序在软件工程的生产实践中的可读性、可理解性和可维护性,最终实现提高软件质量保障的目标。 | ||
搜索关键词: | 一种 基于 程序 切片 深度 神经网络 类型 推导 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京大学,未经南京大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202210052087.1/,转载请声明来源钻瓜专利网。