[发明专利]基于卷积神经网络的细粒度区域分类方法及系统在审
申请号: | 202210016223.1 | 申请日: | 2022-01-07 |
公开(公告)号: | CN114462505A | 公开(公告)日: | 2022-05-10 |
发明(设计)人: | 卢旭;黄雄伟;吴少辉;肖志伟 | 申请(专利权)人: | 广东技术师范大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 广州市华学知识产权代理有限公司 44245 | 代理人: | 黄卫萍 |
地址: | 510665 广东*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及基于卷积神经网络的细粒度区域分类方法及系统,其方法包括步骤:S1、将UJIIndoorLoc数据集输入SAE‑1D Resnet10卷积神经网络,获取楼栋分类与分层结果;S2、利用二次代价函数计算分类结果与真实值的误差;S3、将基于CSI的数据集分割为大小为w的bins;S4、进行CNN状态推理模型训练,输出状态标签;S5、将状态标签的CSI幅度输入CNN状态推理模型进行训练,输出细粒度区域分类的概率分布;S6、利用最大概率和概率熵计算集中度,获取样本置信度;S7、动态调整活动分割算法。本发明通过利用CSI活动窗口分割、CNN模型训练分类状态标签、引用反馈机制来动态调整状态分割算法的方式取代人为主观观察和经验确定的最佳状态分割阈值,样本置信度更高。 | ||
搜索关键词: | 基于 卷积 神经网络 细粒度 区域 分类 方法 系统 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于广东技术师范大学,未经广东技术师范大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202210016223.1/,转载请声明来源钻瓜专利网。