[发明专利]一种基于深度学习的图像无损/近无损压缩方法在审

专利信息
申请号: 202210009301.5 申请日: 2022-01-06
公开(公告)号: CN114359422A 公开(公告)日: 2022-04-15
发明(设计)人: 刘贤明;柏园超;季向阳 申请(专利权)人: 哈尔滨工业大学
主分类号: G06T9/00 分类号: G06T9/00;G06N3/04;G06N3/08
代理公司: 哈尔滨市晨晟知识产权代理有限公司 23219 代理人: 刘文权
地址: 150001 黑龙*** 国省代码: 黑龙江;23
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明一种基于深度学习的图像无损/近无损压缩方法属于图像压缩领域;主要设计了有损图像压缩与残差压缩联合优化的深度神经网络:首先,把原始图像输入深度有损图像压缩网络,得到有损压缩后的码流和重构图像;计算有损重构图像和原始图像的原始残差,并对原始残差进行量化,使得“有损重构+量化残差”与原始图像的最大像素误差严格地小于等于一个给定的误差上界;利用深度神经网络对原始残差或者量化残差进行压缩,压缩后的码流与有损图像压缩码流连接,得到图像无损/近无损压缩结果;相比于传统的图像无损/近无损压缩,本发明利用深度神经网络对有损图像压缩与残差压缩进行联合优化,显著地提升了图像无损/近无损压缩效率。
搜索关键词: 一种 基于 深度 学习 图像 无损 压缩 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于哈尔滨工业大学,未经哈尔滨工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202210009301.5/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top