[发明专利]一种基于深度学习的威胁情报信息抽取方法在审
申请号: | 202210006117.5 | 申请日: | 2022-01-05 |
公开(公告)号: | CN114330322A | 公开(公告)日: | 2022-04-12 |
发明(设计)人: | 李小勇;左峻嘉;高雅丽;兰天 | 申请(专利权)人: | 北京邮电大学 |
主分类号: | G06F40/279 | 分类号: | G06F40/279;G06F40/221;G06F40/30;G06F16/951;G06F16/33;G06N3/04;G06N3/08 |
代理公司: | 北京挺立专利事务所(普通合伙) 11265 | 代理人: | 高福勇 |
地址: | 100876 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于深度学习的威胁情报信息抽取方法,包括以下步骤:S1、情报采集:收集APT报告,对不同源分析网页结构设计web爬虫调用Request库完成非结构化情报文本的采集,设计布隆过滤器实现url的去重处理;S2、预处理:根据文章长度和关键词密度对输入的数据进行筛选,采用YEEDA对筛选出的APT报告进行实体关系标注;S3、实体关系抽取:对预处理好的非结构化APT报告抽取有价值的实体关系三元组。本发明的威胁情报信息抽取方法,通过调整深度神经网络模型并提出一种新的序列标注方法与实体关系抽取规则,解决当前威胁情报实体关系抽取系统存在传播误差以及模型对重叠关系实体抽取准确率不高的问题,同时给出了大规模威胁情报数据集构建以及预处理的细节。 | ||
搜索关键词: | 一种 基于 深度 学习 威胁 情报 信息 抽取 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京邮电大学,未经北京邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202210006117.5/,转载请声明来源钻瓜专利网。