[发明专利]一种基于深度时空特征提取的风力发电机故障诊断方法在审
申请号: | 202111620688.X | 申请日: | 2021-12-27 |
公开(公告)号: | CN114298219A | 公开(公告)日: | 2022-04-08 |
发明(设计)人: | 武鑫;吕佃顺;王立鹏;赵栋利;马强 | 申请(专利权)人: | 江苏国科智能电气有限公司 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 北京科迪生专利代理有限责任公司 11251 | 代理人: | 安丽 |
地址: | 226400 江苏省*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提出了一种基于深度时空特征提取的风力发电机故障诊断方法,针对风力发电机SCADA多变量时间序列数据时空关联性强的特点,分别设计时间和空间特征提取网络,利用时序卷积注意力模块对时序故障特征进行筛选和提取,同时通过空洞卷积模块挖掘变量间的关联信息,然后将时序特征和空间特征进行合并,最后输入到故障分类器中,得到最终的故障诊断结果,上述技术手段,利用时间和空间维度的深度故障特征提取,深入捕获风力发电机的故障信息,提高了风力发电机故障诊断精度,从而及时的得到风力发电机故障状态信息,对其进行处理和维护,避免风电机组部件的深度伤害,保障风力发电机健康平稳运行。 | ||
搜索关键词: | 一种 基于 深度 时空 特征 提取 风力发电机 故障诊断 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于江苏国科智能电气有限公司,未经江苏国科智能电气有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202111620688.X/,转载请声明来源钻瓜专利网。