[发明专利]基于深度卷积神经网络的生物活性肽预测方法在审
| 申请号: | 202111465271.0 | 申请日: | 2021-12-03 |
| 公开(公告)号: | CN114334011A | 公开(公告)日: | 2022-04-12 |
| 发明(设计)人: | 林常航 | 申请(专利权)人: | 福建技术师范学院 |
| 主分类号: | G16B40/20 | 分类号: | G16B40/20;G16B45/00;G06N3/04;G06N3/08 |
| 代理公司: | 北京易捷胜知识产权代理事务所(普通合伙) 11613 | 代理人: | 蔡晓敏 |
| 地址: | 350300 福建*** | 国省代码: | 福建;35 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | 本发明涉及一种基于深度卷积神经网络的生物活性肽预测方法,通过不同尺寸过滤器的一维卷积来处理原始的氨基酸残基序列,提取有用的特征,通过优化模型输出与标签的交叉熵损失优化模型,专门为AAP的挖掘和预测而设计,该模型即AAPred‑CNN基于嵌入技术而不基于特征工程和人工设计的特征,AAPred‑CNN的训练和测试所使用的数据集是公开的数据集main和NT15数据集,本发明通过将首次将经典的深度学习算法TextCNN结合嵌入技术、残基倾向性分析等应用到抗血管生成肽的预测问题上,为AAP的挖掘和预测设计出具备优秀性能分类器AAPred‑CNN,AAPred‑CNN基于嵌入技术,不依赖于特征工程,能够通过自适应地方式从纯粹的氨基酸残基序列中提取有用的信息并用于预测多肽是否具有抗血管生成的功能活性。 | ||
| 搜索关键词: | 基于 深度 卷积 神经网络 生物 活性 预测 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于福建技术师范学院,未经福建技术师范学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202111465271.0/,转载请声明来源钻瓜专利网。





