[发明专利]一种基于时序图Transformer的连续动态网络表征学习方法在审

专利信息
申请号: 202111434187.2 申请日: 2021-11-29
公开(公告)号: CN114118375A 公开(公告)日: 2022-03-01
发明(设计)人: 王英;李莹姬;吴越 申请(专利权)人: 吉林大学
主分类号: G06N3/04 分类号: G06N3/04;G06N3/08;G06F17/13
代理公司: 长春市恒誉专利代理事务所(普通合伙) 22212 代理人: 李荣武
地址: 130012 吉*** 国省代码: 吉林;22
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于时序图Transformer的连续动态网络表征学习方法,属于网络表征学习领域,包括:由基于连续动态系统的时序编码模块对动态网络的时序信息进行建模,将时间戳信息编码为向量,和节点的特征向量进行结合;基于节点在动态图中的影响力进行中心度编码,将节点的度作为其中心度信息编码到节点特征中,由基于中心度编码的注意力模块捕获动态网络的结构信息;设计基于注意力机制的空间事件系数描述动态网络中事件依赖的全局范围。本发明应用神经常微分方程编码连续时序信息,并通过中心度编码和堆叠多层Transformer实现对动态网络中时序信息和拓扑结构信息的提取,以学习包含全局依赖关系的连续动态网络表征。
搜索关键词: 一种 基于 时序 transformer 连续 动态 网络 表征 学习方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于吉林大学,未经吉林大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202111434187.2/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top