[发明专利]一种基于强化学习的取送货车辆路径规划方法在审
| 申请号: | 202111355807.3 | 申请日: | 2021-11-16 |
| 公开(公告)号: | CN114237222A | 公开(公告)日: | 2022-03-25 |
| 发明(设计)人: | 刘发贵;赖承启 | 申请(专利权)人: | 华南理工大学 |
| 主分类号: | G05D1/02 | 分类号: | G05D1/02 |
| 代理公司: | 广州粤高专利商标代理有限公司 44102 | 代理人: | 周春丽 |
| 地址: | 510640 广*** | 国省代码: | 广东;44 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | 本发明公开了一种基于强化学习的取送货车辆路径规划方法。所述方法包括以下步骤:构建基于A2C框架的强化学习模型及其优化目标;初始化强化学习模型所有的参数值,随机生成数据集;构建强化学习模型的训练过程,将生成的数据集输入强化学习模型,计算每一轮训练结果的奖励值;根据损失值采用基于策略梯度的强化学习方法对强化学习模型进行优化;设置最大训练轮数,重复训练得到训练完成的强化学习模型,采用训练完成的强化学习模型进行取送货车辆路径规划。本发明不同于传统的精确算法和启发式算法,能够快速求解大规模路径规划问题。 | ||
| 搜索关键词: | 一种 基于 强化 学习 送货 车辆 路径 规划 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华南理工大学,未经华南理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202111355807.3/,转载请声明来源钻瓜专利网。





