[发明专利]基于深度学习的信号频谱增强方法及系统在审
申请号: | 202111088914.4 | 申请日: | 2021-09-16 |
公开(公告)号: | CN113971258A | 公开(公告)日: | 2022-01-25 |
发明(设计)人: | 杨铮;张驿 | 申请(专利权)人: | 清华大学 |
主分类号: | G06F17/10 | 分类号: | G06F17/10;G06F17/14;G06F17/15;G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 北京路浩知识产权代理有限公司 11002 | 代理人: | 耿向宇 |
地址: | 100084 北*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供一种基于深度学习的信号频谱增强方法及系统,方法包括:获取待处理的信号频谱;将待处理的信号频谱输入频谱增强模型,得到频谱增强模型输出的增强后的信号频谱;其中,频谱增强模型是基于具有泄露的频谱样本数据以及消除泄露的频谱样本数据对深度学习神经网络进行训练得到的。本发明提供的基于深度学习的信号频谱增强方法及系统,通过预先构建的频谱增强模型实现频谱增强,由于频谱增强模型是基于具有泄露的频谱样本数据以及消除泄露的频谱样本数据对深度学习神经网络进行训练得到的,能够在很大程度上减轻甚至消除频谱泄露的影响,从而使信号频谱的频率分辨率更高,相比于传统的加窗操作,频谱泄露的消除效果更加理想。 | ||
搜索关键词: | 基于 深度 学习 信号 频谱 增强 方法 系统 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于清华大学,未经清华大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202111088914.4/,转载请声明来源钻瓜专利网。