[发明专利]基于多尺度融合轻量化深度学习卷积网络的目标检测方法在审

专利信息
申请号: 202111068517.0 申请日: 2021-09-13
公开(公告)号: CN113902971A 公开(公告)日: 2022-01-07
发明(设计)人: 曾大治;梁若飞;章菲菲;刘英杰 申请(专利权)人: 北京理工雷科电子信息技术有限公司
主分类号: G06V20/10 分类号: G06V20/10;G06V10/82;G06V30/18;G06N3/04;G06N3/08
代理公司: 北京理工大学专利中心 11120 代理人: 田亚琪
地址: 100081 北京市海淀区中关*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了基于多尺度融合轻量化深度学习卷积网络的目标检测方法,设计骨干网络由两个模块组成:主干特征提取模块和多尺度融合定位特征模块;主干特征提取模块遵循了DenseNet网络沿通道维度串联的结构特点,使得每一层与它的所有后续层直接连接,特征可重复利用,不需要学习冗余的特征,从而降低参数量,保持网络精简高效;并且在其基础上增加了双路卷积通道方式,从而得到不同尺度的感受野;多尺度特征模块沿用了SSD多尺度锚点框检测机制,并在其基础上加入3‑way残差模块,把多尺度特征进行融合,增强特征的表达能力,从而检测多尺度飞机目标。
搜索关键词: 基于 尺度 融合 量化 深度 学习 卷积 网络 目标 检测 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京理工雷科电子信息技术有限公司,未经北京理工雷科电子信息技术有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202111068517.0/,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top