[发明专利]融合多特征信息的加权图卷积神经网络评分预测模型在审
申请号: | 202111042055.5 | 申请日: | 2021-09-07 |
公开(公告)号: | CN113807422A | 公开(公告)日: | 2021-12-17 |
发明(设计)人: | 宋玉蓉;史宇涛 | 申请(专利权)人: | 南京邮电大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06N3/04;G06N3/08;G06F17/16 |
代理公司: | 南京苏科专利代理有限责任公司 32102 | 代理人: | 姚姣阳 |
地址: | 210023 江苏*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供了一种融合多特征信息的加权图卷积神经网络评分预测模型,建立加权图卷积神经网络用户模型,输出用户潜在特征向量矩阵;建立加权图卷积神经网络用户模型,输出项目潜在特征向量矩阵;将用户潜在特征向量矩阵和项目潜在特征向量矩阵进行连接后输入到评分预测模型多层感知机中,将得到的预测评分与实际评分对比,通过优化函数对评分预测模型多层感知机进行优化,更新函数。本发明通过计算用户与用户、项目与项目之间的属性相似度来利用用户和项目的辅助信息,同时考虑了用户的兴趣变化对评分信息进行修正,增强了用户和项目的特征表示,解决现有的推荐模型仅利用用户项目的交互信息而忽略了用户和项目的自身属性特征的缺点。 | ||
搜索关键词: | 融合 特征 信息 加权 图卷 神经网络 评分 预测 模型 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京邮电大学,未经南京邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202111042055.5/,转载请声明来源钻瓜专利网。
- 信息记录介质、信息记录方法、信息记录设备、信息再现方法和信息再现设备
- 信息记录装置、信息记录方法、信息记录介质、信息复制装置和信息复制方法
- 信息记录装置、信息再现装置、信息记录方法、信息再现方法、信息记录程序、信息再现程序、以及信息记录介质
- 信息记录装置、信息再现装置、信息记录方法、信息再现方法、信息记录程序、信息再现程序、以及信息记录介质
- 信息记录设备、信息重放设备、信息记录方法、信息重放方法、以及信息记录介质
- 信息存储介质、信息记录方法、信息重放方法、信息记录设备、以及信息重放设备
- 信息存储介质、信息记录方法、信息回放方法、信息记录设备和信息回放设备
- 信息记录介质、信息记录方法、信息记录装置、信息再现方法和信息再现装置
- 信息终端,信息终端的信息呈现方法和信息呈现程序
- 信息创建、信息发送方法及信息创建、信息发送装置