[发明专利]一种基于自监督学习和聚类的滚动轴承故障诊断方法在审
申请号: | 202110949934.X | 申请日: | 2021-08-18 |
公开(公告)号: | CN113792758A | 公开(公告)日: | 2021-12-14 |
发明(设计)人: | 芦楠楠;闫彤;马占国;肖晗晗;王振领 | 申请(专利权)人: | 中国矿业大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 南京经纬专利商标代理有限公司 32200 | 代理人: | 施昊 |
地址: | 221116 *** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于自监督学习和聚类的滚动轴承故障诊断方法,首先,基于自监督学习网络对轴承数据不同时频变换类型的识别,提取两域数据的底层无偏向特征,然后以监督学习的方式训练滚动轴承故障诊断数据集中的源域数据,并利用源域监督学习网络预测得到滚动轴承故障诊断数据集中的目标域数据的初始伪标签;其次,基于网络预测生成伪标签及其概率值,考虑目标域数据自身分布特点,利用K‑means算法对自监督网络提取的目标域数据特征进行聚类,依照强簇规则,对伪标签和概率值进行更新;最后,将更新后概率值设定为对应样本伪标签的置信度,整体的平均值作为该类的整体置信度,进一步提高伪标签可用性,实现无监督领域自适应的故障诊断。 | ||
搜索关键词: | 一种 基于 监督 学习 滚动轴承 故障诊断 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国矿业大学,未经中国矿业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202110949934.X/,转载请声明来源钻瓜专利网。