[发明专利]基于分层选择性Adaboost-DNNs的图像分类模型建立、分类方法及系统有效
申请号: | 202110727273.6 | 申请日: | 2021-06-29 |
公开(公告)号: | CN113569913B | 公开(公告)日: | 2023-04-25 |
发明(设计)人: | 赵玄润;章盼盼;梁伟;柏恒;张添祥;许鹏飞;聂卫科;郭军 | 申请(专利权)人: | 西北大学 |
主分类号: | G06V10/764 | 分类号: | G06V10/764;G06V10/82;G06N3/0464;G06N3/08 |
代理公司: | 西安恒泰知识产权代理事务所 61216 | 代理人: | 王芳 |
地址: | 710069 *** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明属于计算机视觉技术领域,公开了一种基于分层选择性Adaboost‑DNNs的图像分类模型建立、分类方法及系统。方法包括:步骤1:获取图像数据集,标注图像数据集中的每张图像的类别,将图像分为训练集和验证集并设定训练集中每张图像的初始权重;步骤2:建立HS Adaboost‑DNNs模型,所述的HS Adaboost‑DNNs模型包括M个子网络,M为正整数,将图像数据集的所有类别作为真实标签,采用训练集、验证集和真实标签对HSAdaboost‑DNNs模型进行训练,至模型收敛后训练结束,将训练好的HSAdaboost‑DNNs模型作为图像识别预测模型。本发明可以用更少的网络层对容易识别的图像快速识别,对难以识别的图像需要通过更复杂的子模块,提高了图像分类的精度与速度。 | ||
搜索关键词: | 基于 分层 选择性 adaboost dnns 图像 分类 模型 建立 方法 系统 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西北大学,未经西北大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202110727273.6/,转载请声明来源钻瓜专利网。