[发明专利]一种基于自监督学习的钢材微观组织分割方法在审
申请号: | 202110568777.8 | 申请日: | 2021-05-25 |
公开(公告)号: | CN113313004A | 公开(公告)日: | 2021-08-27 |
发明(设计)人: | 段献宝;何惠珍;魏灏;黄铁 | 申请(专利权)人: | 武汉工程大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 湖北武汉永嘉专利代理有限公司 42102 | 代理人: | 崔友明 |
地址: | 430074 湖北*** | 国省代码: | 湖北;42 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供了一种基于自监督学习的钢材微观组织分割方法,将实验中获取的钢材金相微观组织图像作为输入数据,再通过搭建的卷积网络模型对金相图进行特征提取得到特征图,同时使用超像素分割算法对原始输入的金相图做初步聚类分割得到超像素分割图,最后对特征图与超像素分割图进行映射,实现自监督学习,实现了准确、高效地对钢材微观组织进行分割的功能。本发明训练得到的模型,适用于钢材微观组织分割领域;本发明无需人工标注,降低了人工成本和时间成本。 | ||
搜索关键词: | 一种 基于 监督 学习 钢材 微观 组织 分割 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于武汉工程大学,未经武汉工程大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202110568777.8/,转载请声明来源钻瓜专利网。