[发明专利]一种基于深度学习模型的锂离子电池健康状态诊断方法在审

专利信息
申请号: 202110381523.5 申请日: 2021-04-09
公开(公告)号: CN113009349A 公开(公告)日: 2021-06-22
发明(设计)人: 杜春雨;崔邴晗;李赛;尹鸽平;左朋建;程新群;马玉林 申请(专利权)人: 哈尔滨工业大学
主分类号: G01R31/367 分类号: G01R31/367;G01R31/378;G01R31/385;G01R31/392
代理公司: 北京慕达星云知识产权代理事务所(特殊普通合伙) 11465 代理人: 符继超
地址: 150001 黑龙*** 国省代码: 黑龙江;23
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开一种基于深度学习模型的锂离子电池健康状态诊断方法,包括:对锂离子电池进行锂离子电池循环老化测试;获取每一循环过程中锂离子电池健康状态真实值;获取在不同环境温度和容量损失下的锂离子电池的开路电压OCV数据;对二阶RC等效电路模型中的电路元件参数进行辨识,并构建锂离子电池寿命特征参量矩阵;建立并训练特征转换的深度学习模型,对待估计锂离子电池进行任意条件下的充放电测试,获得测试数据;对阻抗参数进行辨识,构建锂离子电池特征参量矩阵并作为输入数据,输入到训练后的特征转换的深度学习模型中,获得计算结果,作为待估计锂离子电池的SOH。本发明计算能力强,精度高,适应性宽。
搜索关键词: 一种 基于 深度 学习 模型 锂离子电池 健康 状态 诊断 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于哈尔滨工业大学,未经哈尔滨工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202110381523.5/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top