[发明专利]基于CNN-LSTM神经网络模型与ARIMA模型的时间序列预测方法及系统在审
申请号: | 202110076545.0 | 申请日: | 2021-01-20 |
公开(公告)号: | CN112819136A | 公开(公告)日: | 2021-05-18 |
发明(设计)人: | 张登银;赵远鹏;徐业鹏;韩文生;寇英杰 | 申请(专利权)人: | 南京邮电大学 |
主分类号: | G06N3/04 | 分类号: | G06N3/04;G06N3/08 |
代理公司: | 南京纵横知识产权代理有限公司 32224 | 代理人: | 董建林 |
地址: | 210003 江*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了时间序列预测技术领域的一种基于CNN‑LSTM神经网络模型与ARIMA模型的时间序列预测方法及系统,旨在解决现有技术中没有充分提取时间序列的周期特征从而导致预测精度不够的问题。包括:获取待预测的时间序列数据,构建输入样本;将输入样本输入经过训练的基于CNN‑LSTM的神经网络模型,得到第一预测结果;将第一预测结果与输入样本的观测值进行比对,得到误差序列;将误差序列输入建立的ARIMA模型对误差序列进行误差修正预测,得到第二预测结果;将第一预测结果和第二预测结果相加得到时间序列的最终预测结果。 | ||
搜索关键词: | 基于 cnn lstm 神经网络 模型 arima 时间 序列 预测 方法 系统 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京邮电大学,未经南京邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202110076545.0/,转载请声明来源钻瓜专利网。