[发明专利]一种基于数据高位稀疏性的神经网络量化训练方法在审

专利信息
申请号: 202011504963.7 申请日: 2020-12-18
公开(公告)号: CN112465125A 公开(公告)日: 2021-03-09
发明(设计)人: 宋一平;梁骏;钟宇清;宋蕴;杨常星 申请(专利权)人: 杭州国芯科技股份有限公司
主分类号: G06N3/04 分类号: G06N3/04;G06N3/08
代理公司: 杭州君度专利代理事务所(特殊普通合伙) 33240 代理人: 朱亚冠
地址: 310012 浙江省杭州市文*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于数据高位稀疏性的神经网络量化训练方法。本发明方法首先将数据分为高位数据和低位数据两段,低位数据训练时施加正则化,高位数据不参与训练;若低位数据训练时发生进位或者退位,更新高位数据;训练完毕后检查高位数据是否更新,若更新则继续训练,否则,判断低位数据是否大于阈值:若低位数据大于阈值,继续训练;否则,令低位数据等于0。将最终的高位数据和低位数据合并为新数据,并且锁死,在神经网络训练时不再更新;等待神经网络其他权重训练完毕,最后输出数据。本发明方法在线性量化或者其他简单量化的基础上,对其他量化得到的数据进行进一步量化,使得数据稀疏性更强,有利于硬件计算和存储,同时保证网络性能。
搜索关键词: 一种 基于 数据 高位 稀疏 神经网络 量化 训练 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于杭州国芯科技股份有限公司,未经杭州国芯科技股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202011504963.7/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top