[发明专利]一种基于轻量3D残差网络和TCN的多模态动态手势识别方法有效
| 申请号: | 202011467797.8 | 申请日: | 2020-12-14 |
| 公开(公告)号: | CN112507898B | 公开(公告)日: | 2022-07-01 |
| 发明(设计)人: | 唐贤伦;闫振甫;李洁;彭德光;彭江平;郝博慧;朱楚洪;李鹏华 | 申请(专利权)人: | 重庆邮电大学 |
| 主分类号: | G06V40/10 | 分类号: | G06V40/10;G06V40/20;G06V10/764;G06V10/82;G06K9/62;G06N3/04;G06N3/08 |
| 代理公司: | 重庆市恒信知识产权代理有限公司 50102 | 代理人: | 陈栋梁 |
| 地址: | 400065 重*** | 国省代码: | 重庆;50 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | 本发明请求保护一种基于轻量3D残差网络和TCN的多模态动态手势识别方法。首先,对数据集中的原始视频进行采样,按照时间顺序排序保存;然后,使用大型的公开手势识别数据集对轻量3D残差网络进行预训练,并保存模型的权重文件;接着,使用RGB‑D图像序列作为输入,轻量3D残差网络和时间卷积网络作为基础模型进行长短期的时空特征的提取,并使用注意力机制加权融合多模态的信息。其中RGB和深度(Depth)序列分别输入相同的网络结构;最后,使用全连接层进行分类,采用交叉熵损失函数计算损失值,并使用准确率和F1Score作为网络模型的评估指标。本发明既可以达到较高的分类准确率,又具有参数量低的优点。 | ||
| 搜索关键词: | 一种 基于 网络 tcn 多模态 动态 手势 识别 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆邮电大学,未经重庆邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202011467797.8/,转载请声明来源钻瓜专利网。





