[发明专利]基于可解释模型的循环神经网络后门攻击检测方法有效

专利信息
申请号: 202010936181.4 申请日: 2020-09-08
公开(公告)号: CN112132262B 公开(公告)日: 2022-05-20
发明(设计)人: 范铭;司梓良;刘烃;魏闻英;魏佳利 申请(专利权)人: 西安交通大学
主分类号: G06N3/04 分类号: G06N3/04;G06N3/08;G06K9/62
代理公司: 西安通大专利代理有限责任公司 61200 代理人: 王艾华
地址: 710049 *** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开一种基于可解释模型的循环神经网络后门攻击检测方法,分三步对RNN模型进行抽象并对文本进行后门检测:首先使用机器学习算法对RNN隐藏层向量进行聚类,构建不确定有穷自动机;其次根据构建的不确定有穷自动机,获取文本的状态转移路径,从而计算文本中每个单词的权重;最后基于变异测试的思想,对文本中的后门进行检测。通过以上方法,可以准确地对RNN在文本上的决策做出解释,并准确检测出后门文本。
搜索关键词: 基于 可解释 模型 循环 神经网络 后门 攻击 检测 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安交通大学,未经西安交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202010936181.4/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top