[发明专利]一种基于深度强化学习的动态路径优化问题求解方法有效

专利信息
申请号: 202010855264.0 申请日: 2020-08-24
公开(公告)号: CN112116129B 公开(公告)日: 2022-11-01
发明(设计)人: 刘弘;张子臻 申请(专利权)人: 中山大学
主分类号: G06Q10/04 分类号: G06Q10/04;G06N20/00;G06Q10/08
代理公司: 广州粤高专利商标代理有限公司 44102 代理人: 张金福
地址: 510275 广东*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于深度强化学习的动态路径优化问题求解方法,包括以下步骤:S1:动态路径优化问题定义;S2:构建深度强化学习框架,所述深度强化学习框架包括四个组成部分,分别为状态、智能体、动作和奖励,所述状态包括所有顾客及所有点对之间预计所需要的通行时间,所述智能体在不同状态下进行决策,得到对应的动作,所述动作为下一位访问的顾客,所述奖励为从仓库点出发,访问所有顾客后回到仓库点所需要的时间;S3:利用深度强化学习框架得出优化后的路径。本发明利用了深度强化学习算法,将动态路径优化问题的动态环境嵌入到模型中,使得模型能感知到环境的动态变化,从而使其在极短时间内得到一个较优的解。
搜索关键词: 一种 基于 深度 强化 学习 动态 路径 优化 问题 求解 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中山大学,未经中山大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202010855264.0/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top