[发明专利]一种基于增强式学习的人体跌倒检测方法及系统在审
申请号: | 202010624368.0 | 申请日: | 2020-06-30 |
公开(公告)号: | CN111931568A | 公开(公告)日: | 2020-11-13 |
发明(设计)人: | 王晓原;刘善良;刘亚奇;韩俊彦;刘士杰 | 申请(专利权)人: | 青岛科技大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 北京易捷胜知识产权代理事务所(普通合伙) 11613 | 代理人: | 齐胜杰;孙晓淑 |
地址: | 266000 山*** | 国省代码: | 山东;37 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供一种基于增强式学习的人体跌倒检测方法及系统,该方法包括:采集人体在不同姿态下的特征参数,构建人体运动数据集,其中不同姿态中包括跌倒;采用监督学习对人体运动数据集构建用于识别跌倒的人工神经网络模型;将人工神经网络模型的当前权值和当前阈值分别作为初始权值和初始阈值,利用误差‑修正方法对人工神经网络模型进行训练,得到训练后的模型;实时采集基于时间序列的人体运动行为参数;利用训练后的模型对人体运动行为参数进行跌倒检测。本发明通过监督学习识别人工神经网络,采用误差‑修正学习的方法对人工神经网络进行训练,调整神经网络的权值和阈值,以使神经网络输出最优,可减少误报率,提高报警的准确性。 | ||
搜索关键词: | 一种 基于 增强 学习 人体 跌倒 检测 方法 系统 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于青岛科技大学,未经青岛科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202010624368.0/,转载请声明来源钻瓜专利网。