[发明专利]无监督高光谱图像隐低秩投影学习特征提取方法有效

专利信息
申请号: 202010609017.2 申请日: 2020-06-29
公开(公告)号: CN111860612B 公开(公告)日: 2021-09-03
发明(设计)人: 潘磊;黄细凤;廖泓舟;李春豹;陈伟晴 申请(专利权)人: 西南电子技术研究所(中国电子科技集团公司第十研究所)
主分类号: G06K9/62 分类号: G06K9/62;G06F17/16
代理公司: 成飞(集团)公司专利中心 51121 代理人: 郭纯武
地址: 610036 四川*** 国省代码: 四川;51
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开的无监督高光谱图像隐低秩投影学习特征提取方法,旨在提供一种能够实现快速、高鲁棒性的无监督高光谱特征提取方法。本发明通过下述技术方案予以实现:首先将输入的高光谱图像数据按比例划分成训练集和测试集;设计鲁棒性权重函数,计算训练集样本两两之间的光谱相似度,根据训练集构建谱约束矩阵和图正则化约束;然后将隐低秩表示模型的行表示系数近似分解,结合谱约束矩阵和图正则化约束构建隐低秩投影学习模型,采用交替迭代乘子法优化求解隐低秩投影学习模型,获取低维投影矩阵,输出所有测试集样本的类别,将训练集的低维特征作为支持向量机的训练样本,对测试集的低维特征进行分类,以分类结果的质量评估特征提取的性能。
搜索关键词: 监督 光谱 图像 隐低秩 投影 学习 特征 提取 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西南电子技术研究所(中国电子科技集团公司第十研究所),未经西南电子技术研究所(中国电子科技集团公司第十研究所)许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202010609017.2/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top