[发明专利]无监督高光谱图像隐低秩投影学习特征提取方法有效
申请号: | 202010609017.2 | 申请日: | 2020-06-29 |
公开(公告)号: | CN111860612B | 公开(公告)日: | 2021-09-03 |
发明(设计)人: | 潘磊;黄细凤;廖泓舟;李春豹;陈伟晴 | 申请(专利权)人: | 西南电子技术研究所(中国电子科技集团公司第十研究所) |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06F17/16 |
代理公司: | 成飞(集团)公司专利中心 51121 | 代理人: | 郭纯武 |
地址: | 610036 四川*** | 国省代码: | 四川;51 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开的无监督高光谱图像隐低秩投影学习特征提取方法,旨在提供一种能够实现快速、高鲁棒性的无监督高光谱特征提取方法。本发明通过下述技术方案予以实现:首先将输入的高光谱图像数据按比例划分成训练集和测试集;设计鲁棒性权重函数,计算训练集样本两两之间的光谱相似度,根据训练集构建谱约束矩阵和图正则化约束;然后将隐低秩表示模型的行表示系数近似分解,结合谱约束矩阵和图正则化约束构建隐低秩投影学习模型,采用交替迭代乘子法优化求解隐低秩投影学习模型,获取低维投影矩阵,输出所有测试集样本的类别,将训练集的低维特征作为支持向量机的训练样本,对测试集的低维特征进行分类,以分类结果的质量评估特征提取的性能。 | ||
搜索关键词: | 监督 光谱 图像 隐低秩 投影 学习 特征 提取 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西南电子技术研究所(中国电子科技集团公司第十研究所),未经西南电子技术研究所(中国电子科技集团公司第十研究所)许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202010609017.2/,转载请声明来源钻瓜专利网。
- 上一篇:面向任务的文本生成图像网络模型
- 下一篇:一种罐体表面打磨方法
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序