[发明专利]一种深度置信网络与极限学习机的轴承衰退趋势预测方法有效
申请号: | 202010542440.5 | 申请日: | 2020-06-15 |
公开(公告)号: | CN111737911B | 公开(公告)日: | 2022-09-27 |
发明(设计)人: | 许雨晨;李宏坤;马跃;黄刚劲;张明亮 | 申请(专利权)人: | 大连理工大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/62;G06N3/04;G06N3/08;G01M13/045 |
代理公司: | 大连理工大学专利中心 21200 | 代理人: | 温福雪;侯明远 |
地址: | 116024 辽*** | 国省代码: | 辽宁;21 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明属于机械设备可靠性评估技术领域,提出一种深度置信网络与极限学习机的轴承衰退趋势预测方法。在构建指标部分,首先从轴承振动信号中提取原始特征。分别从时域、时频域以及三角函数的角度,选取能够表征轴承运行状态的特征,构建多域特征集。然后建立深度置信网络,通过对特征集进行无监督学习,将多域特征融合,得到健康指标;在退化趋势预测部分,首先将健康指标进行归一化处理,然后根据健康指标对轴承的运行状态划分阶段,最后使用极限学习机预测模型,对轴承不同衰退阶段进行趋势预测。本发明提出的轴承退化趋势预测方法,预测精度较高,并且模型训练用时较少。 | ||
搜索关键词: | 一种 深度 置信 网络 极限 学习机 轴承 衰退 趋势 预测 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于大连理工大学,未经大连理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202010542440.5/,转载请声明来源钻瓜专利网。
- 上一篇:一种沥青混凝土道路检查井先升井结构的施工方法
- 下一篇:一种纺织用锁边机