[发明专利]一种基于深度残差网络的人脸表情识别方法有效
申请号: | 202010537198.2 | 申请日: | 2020-06-12 |
公开(公告)号: | CN111695513B | 公开(公告)日: | 2023-02-14 |
发明(设计)人: | 高涛;邵倩;陈婷;李永会;张亚南;张赛 | 申请(专利权)人: | 长安大学 |
主分类号: | G06V40/16 | 分类号: | G06V40/16;G06V10/774;G06V10/82;G06N3/0464;G06N3/084 |
代理公司: | 西安通大专利代理有限责任公司 61200 | 代理人: | 李鹏威 |
地址: | 710064*** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于深度残差网络的人脸表情识别方法,利用放大的人脸表情图片对深度残差网络模型进行训练,通过深度残差网络模型对放大的人脸表情图片进行特征提取,使其可以提取到不同尺度的特征以获取图像更丰富的特征,以减少网络参数计算量,然后对提取的特征进行降维处理,对降维处理后的进行残差处理得到不同尺度的图形特征,将不同尺度的图形特征进行卷积与压缩处理得到学习图形特征,将学习图形特征进行下采样处理,这样直接实现降维,极大的减少了网络的参数,并可以对整个网络在结构上做正则化防止过拟合,将获得图像更丰富的特征以提高分类识别的准确率,将下采样处理后的学习图形特征进行分类处理,本发明能够提取到更深层次且不同尺度的图像特征,通过对比实验,表明了该网络具有较好的准确率和鲁棒性。 | ||
搜索关键词: | 一种 基于 深度 网络 表情 识别 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于长安大学,未经长安大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202010537198.2/,转载请声明来源钻瓜专利网。