[发明专利]一种基于层次学习的长尾分布图像识别方法有效
申请号: | 202010465621.2 | 申请日: | 2020-05-28 |
公开(公告)号: | CN111738303B | 公开(公告)日: | 2023-05-23 |
发明(设计)人: | 陈琼;林恩禄;刘庆发 | 申请(专利权)人: | 华南理工大学 |
主分类号: | G06V10/764 | 分类号: | G06V10/764;G06N3/0464;G06N3/08;G06V10/774;G06V10/82 |
代理公司: | 广州市华学知识产权代理有限公司 44245 | 代理人: | 冯炳辉 |
地址: | 510640 广*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于层次学习的长尾分布图像识别方法,包括步骤:1)使用预训练模型提取长尾分布图像数据中每个对象的视觉特征;2)依据视觉特征构建类与类之间的层次超类树关系;3)依据层次超类树关系搭建层次超类树神经网络模型;4)使用基于层次学习的方式训练层次超类树神经网络模型;5)用训练好的层次超类树神经网络模型对长尾分布图像数据进行识别。本发明首次将长尾图像识别问题转变成由易到难的层次超类学习问题,可有效缓解长尾分布中类别分布不平衡以及少数类识别准确率低的问题。此外,本发明在其它不同不平衡程度的数据环境中也有优秀的分类识别性能,因而本发明具有实际应用价值,值得推广。 | ||
搜索关键词: | 一种 基于 层次 学习 长尾 分布 图像 识别 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华南理工大学,未经华南理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202010465621.2/,转载请声明来源钻瓜专利网。