[发明专利]基于隐式表观学习的乳腺X射线影像分类模型训练方法有效
申请号: | 202010147323.9 | 申请日: | 2020-03-05 |
公开(公告)号: | CN111415741B | 公开(公告)日: | 2023-09-26 |
发明(设计)人: | 高飞;刚亚栋;张番栋;张笑春;俞益洲 | 申请(专利权)人: | 北京深睿博联科技有限责任公司;杭州深睿博联科技有限公司 |
主分类号: | G16H50/20 | 分类号: | G16H50/20;G06V10/764;G06V10/774;G06V10/82;G06N3/084 |
代理公司: | 北京天方智力知识产权代理有限公司 11719 | 代理人: | 谷成 |
地址: | 102209 北京市昌平区北*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本申请实施例提供了一种基于隐式表观学习的乳腺X射线影像分类模型训练方法和装置,解决了现有乳腺X射线影像分析方式不能充分利用表观特征而导致准确率低的问题。该基于隐式表观学习的乳腺X射线影像分类模型训练方法包括:基于预训练的特征提取模型提取乳腺X射线影像中的多个类型的病灶特征;分别对所述多个类型的病灶特征进行特征抽象建模以获取多个隐式表观特征描述信息;基于所述多个隐式表观特征描述信息获取用于表征所述多个类型的病灶特征之间关联关系的联合隐式表观特征;将所述联合隐式表观特征输入神经网络模型以获取预测分析结果;以及基于所述预测分析结果计算损失函数取值,并基于所述损失函数取值调整所述神经网络模型的参数。 | ||
搜索关键词: | 基于 表观 学习 乳腺 射线 影像 分类 模型 训练 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京深睿博联科技有限责任公司;杭州深睿博联科技有限公司,未经北京深睿博联科技有限责任公司;杭州深睿博联科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202010147323.9/,转载请声明来源钻瓜专利网。